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Problem 1 Let a ≥ 2 be an integer. Prove that there exists a positive integer b with the following property:
For each positive integer n, there is a prime number p = p(a, b, n) such that an + b is divisible by p but not
divisible by p2. [Artūras Dubickas /Vilnius University]

Solution Assume first that a = 2. Select b = 10. Then, for n = 1, the number an + b = 21 + 10 = 12 is
divisible by 3 but not by 32, while for n ≥ 2 the number 2n + 10 is divisible by 2 but not by 22. Similarly, for
a = 2m, where m ≥ 2, it is clear that for b = 10 and for each positive integer n the number an + b = 2mn + 10
is divisible by 2 but not by 22.
It remains to consider the case when a has an odd prime factor. Let q be an odd prime factor of a. If q | a

but q2 ∤ a, then, selecting b = a, we see that an + b = an + a is divisible by q but not by q2. (For n = 1 we
have an + a = 2a, so this is also true.) If q2 | a, then, choosing b = q, we see that for each n ≥ 1 the number
an + b = an + q is divisible by q but not by q2. □
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Problem 2 Find all real numbers x > 1 that satisfy the equality⌊
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for all positive integers n.
Here, ⌊t⌋ is the integer part of t, i.e. the integer such that ⌊t⌋ ≤ t < ⌊t⌋+ 1.

[Marcin J. Zygmunt /University of Silesia in Katowice]

Solution The assumption that x > 1 makes the sum on the right-hand side of the equation finite. Putting
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which, added to the equation, gives ⌊
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Dividing both sides by n and taking the limit as n → ∞ gives
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It remains only to show that for x = φ the equality is satisfied for all positive integers n. So let n
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for any positive integer n. □
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Problem 3 Let us call a sequence (b1, b2, . . . ) of positive integers fast-growing if bn+1 ≥ bn + 2 for all n ≥ 1.
Also, for a sequence a =

(
a(1), a(2), . . .

)
of real numbers and a sequence b = (b1, b2, . . . ) of positive integers, let

us denote

S(a, b) =

∞∑
n=1

∣∣a(bn) + a(bn + 1) + · · ·+ a(bn+1 − 1)
∣∣ .

1. Do there exist two fast-growing sequences b = (b1, b2, . . . ), c = (c1, c2, . . . ) such that for every sequence
a =

(
a(1), a(2), . . .

)
, if all the series

∞∑
n=1

a(n) , S(a, b) and S(a, c)

are convergent, then the series
∞∑

n=1
|a(n)| is also convergent?

2. Do there exist three fast-growing sequences b = (b1, b2, . . . ), c = (c1, c2, . . . ), d = (d1, d2, . . . ) such that
for every sequence a =

(
a(1), a(2), . . .

)
, if all the series

S(a, b) , S(a, c) and S(a, d)

are convergent, then the series
∞∑

n=1
|a(n)| is also convergent?

[Tomáš Bárta /Charles University, Prague]

Solution 2. Yes. Take bn = 2n− 1, cn = 2n, and dn = 3n− 2. So, the convergent series are

|a1 + a2|+ |a3 + a4|+ |a5 + a6|+ . . .

|a2 + a3|+ |a4 + a5|+ |a6 + a7|+ . . .

|a1 + a2 + a3|+ |a4 + a5 + a6|+ . . . .

We have |a1| = |a1 + a2 + a3 − (a2 + a3)| ≤ |a1 + a2 + a3|+ |a2 + a3|, similarly |a3| ≤ |a1 + a2 + a3|+ |a1 + a2|.
Further, |a2| = |a1 + a2 − a1| ≤ |a1 + a2|+ |a1| ≤ |a1 + a2|+ |a1 + a2 + a3|+ |a2 + a3|. The same holds for any
triplet a3k+1, a3k+2, a3k+3. Together we have

|a3k+1|+ |a3k+2|+ |a3k+3| ≤ 3(|a3k+1 + a3k+2|+ |a3k+2 + a3k+3|+ |a3k+1 + a3k+2 + a3k+3|).

It follows that the sequence of partial sums
∑N

n=1 |an| is bounded by 3(S1+S2+S3), where S1, S2, S3 are sums
of the three given series respectively.
1. No. Case 1: there exists n0 such that bn+1 = bn+2, cn+1 = cn+2 for all n ≥ n0. Then for an = (−1)n/n

we have |a(bn) + a(bn + 1)| = 0 = |a(cn) + a(cn + 1)| for all n ≥ n0, so both series
∑

|a(bn) + · · ·+ a(bn+1 − 1)|
and

∑
|a(cn) + · · ·+ a(cn+1 − 1)| converge, also

∑
an is convergent, but

∑
|an| =

∑
1/n = +∞.

Case 2: Either (bn) has infinitely many elements with bn+1 ≥ bn + 3 or (cn) has this property. Let WLOG
(bn) has the property. Then for each n satisfying bn+1 ≥ bn+3, the terms a(bn), a(bn+1), a(bn+2) are among
the summands in |a(bn) + · · ·+ a(bn+1 − 1)|, let us call it the three terms ‘are in the same b-group’. However,
either a(bn), a(bn + 1) are in the same c-group (if bn + 1 ̸= ck for all k) or a(bn + 1), a(bn + 2) are in the same
c-group (if bn + 1 = ck for some k). Hence, we have infinitely many couples (a(ik), a(ik + 1)), k = 1, 2, . . . with
each couple being in the same b-group and also in the same c-group. Now, it is sufficient to put a(ik) = 1/k,
a(ik + 1) = −1/k (we can assume ik+1 > ik + 1) and all the remaining a(n) = 0. Then all the summands in∑

|a(bn) + · · ·+ a(bn+1 − 1)| and
∑

|a(cn) + · · ·+ a(cn+1 − 1)| are zero and obviously,
∑

an is convergent (its
partial sums are either 0 or 1/k), but

∑
|an| = +∞ since it contains all 1/n and has non-negative terms. □
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Problem 4 Let n ≥ 2 be an integer, and let A be an n× n real matrix with minimal polynomial xn + x− 1.
Show that

tr
(
(nAn−1 + I)−1An−2

)
= 0 .

Here, tr(B) =
n∑

i=1

bii denotes the trace of the matrix B = (bij)
n
i,j=1.

[Marcin J. Zygmunt /University of Silesia in Katowice]

Solution The eigenvalues λ1, . . . λn of the matrix A satisfy equality λn + λ = 1, i.e. they are zeroes of the
polynomial α(z) = zn + z − 1. The trace in question is equal to

n∑
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λn−2
k

nλn−1
k + 1

,

where λk are the eigenvalues of A. We need the following two lemmas
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□

Lemma 2. Let z1, . . . , zn be the roots of polynomial P of n-th degree, which are all distinct. Then
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= 0 .

Proof Let w1, . . . , wn−1 be roots of the derivative P ′. Since all roots of P are distinct, the numbers w1, . . . , wn−1

are all different from z1, . . . , zn, or equivalently P ′(zj) ̸= 0 for all j = 1, . . . , n. Now Lemma 1. applied to the

derivative P ′ gives
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The zeroes of α(z) are distinct because for every root z0 of α′ (which satisfies α(z0)′ = nzn−1
0 + 1 = 0) we

have
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n− 1

n
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where ϵn−1 is a root of −1 of degree n−1. Thus Lemma 2 can be applied and it gives
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which proves the desired equality. □


