Problem 1 Let $a \ge 2$ be an integer. Prove that there exists a positive integer b with the following property: For each positive integer n, there is a prime number p = p(a, b, n) such that $a^n + b$ is divisible by p but not divisible by p^2 . [Artūras Dubickas / Vilnius University]

Solution Assume first that a = 2. Select b = 10. Then, for n = 1, the number $a^n + b = 2^1 + 10 = 12$ is divisible by 3 but not by 3^2 , while for $n \ge 2$ the number $2^n + 10$ is divisible by 2 but not by 2^2 . Similarly, for $a = 2^m$, where $m \ge 2$, it is clear that for b = 10 and for each positive integer n the number $a^n + b = 2^{mn} + 10$ is divisible by 2 but not by 2^2 .

It remains to consider the case when a has an odd prime factor. Let q be an odd prime factor of a. If $q \mid a$ but $q^2 \nmid a$, then, selecting b = a, we see that $a^n + b = a^n + a$ is divisible by q but not by q^2 . (For n = 1 we have $a^n + a = 2a$, so this is also true.) If $q^2 \mid a$, then, choosing b = q, we see that for each $n \ge 1$ the number $a^n + b = a^n + q$ is divisible by q but not by q^2 . \Box

Problem 2 Find all real numbers x > 1 that satisfy the equality

$$\left\lfloor \frac{n+1}{x} \right\rfloor = n - \left\lfloor \frac{n}{x} \right\rfloor + \left\lfloor \frac{\left\lfloor \frac{n}{x} \right\rfloor}{x} \right\rfloor - \left\lfloor \frac{\left\lfloor \frac{\left\lfloor \frac{n}{x} \right\rfloor}{x} \right\rfloor}{x} \right\rfloor + \dots$$

for all positive integers n.

Here, |t| is the integer part of t, i.e. the integer such that $|t| \le t < |t| + 1$.

[Marcin J. Zygmunt / University of Silesia in Katowice] **Solution** The assumption that x > 1 makes the sum on the right-hand side of the equation finite. Putting now $\lfloor \frac{n}{x} \rfloor$ for *n* in the equation gives

$$\left\lfloor \frac{\lfloor \frac{n}{x} \rfloor + 1}{x} \right\rfloor = \left\lfloor \frac{n}{x} \right\rfloor - \left\lfloor \frac{\lfloor \frac{n}{x} \rfloor}{x} \right\rfloor + \left\lfloor \frac{\lfloor \frac{\lfloor \frac{n}{x} \rfloor}{x} \rfloor}{x} \right\rfloor - \dots,$$

which, added to the equation, gives

$$\left\lfloor \frac{n+1}{x} \right\rfloor + \left\lfloor \frac{\left\lfloor \frac{n}{x} \right\rfloor + 1}{x} \right\rfloor = n.$$

Dividing both sides by n and taking the limit as $n \to \infty$ gives

$$\frac{1}{x} + \frac{1}{x^2} = 1$$

which has the only solution greater that 1 equal to $\varphi = \frac{1 + \sqrt{5}}{2}$.

It remains only to show that for $x = \varphi$ the equality is satisfied for all positive integers n. So let $\frac{n}{\varphi} = \left| \frac{n}{\varphi} \right| + \varepsilon$, with $0 < \varepsilon < 1$. Now

$$\frac{n+1}{\varphi^2} = \frac{n-n\varphi+n\varphi-1}{\varphi^2} = n - \left\lfloor \frac{n}{\varphi} \right\rfloor + \frac{1}{\varphi^2} - \varepsilon$$

and

and

$$\frac{\left\lfloor \frac{n}{\varphi} \right\rfloor + 1}{\varphi} = \frac{n}{\varphi^2} + \frac{1 - \varepsilon}{\varphi} = n - \left\lfloor \frac{n}{\varphi} \right\rfloor - \varepsilon + \frac{1 - \varepsilon}{\varphi}$$
as $\frac{1}{\varphi^2} = 1 - \frac{1}{\varphi}$. Since both $-\varepsilon + \frac{1 - \varepsilon}{\varphi}, \frac{1}{\varphi^2} - \varepsilon \in (-1, 1)$ and
 $\frac{1}{\varphi^2} - \varepsilon = -\varepsilon \left(1 + \frac{1}{\varphi}\right) + \frac{1}{\varphi} = -\varepsilon \varphi = \left(\frac{1}{\varphi^2} - \varepsilon\right) \varphi,$

so $-\varepsilon + \frac{1-\varepsilon}{\varphi}$ and $\frac{1}{\varphi^2} - \varepsilon$ are either both nonnegative or both negative, and we have the equality

$$\left\lfloor \frac{\left\lfloor \frac{n}{\varphi} \right\rfloor + 1}{\varphi} \right\rfloor = \left\lfloor \frac{n+1}{\varphi^2} \right\rfloor = \left\lfloor (n+1)\left(1 - \frac{1}{\varphi}\right) \right\rfloor = (n+1) + \left\lfloor -\frac{n+1}{\varphi} \right\rfloor = n - \left\lfloor \frac{n+1}{\varphi} \right\rfloor$$

as $\lfloor -\alpha \rfloor = -\lfloor \alpha \rfloor - 1$ for any noninteger α . Thus

$$\begin{bmatrix} \frac{n+1}{\varphi} \end{bmatrix} = n - \left\lfloor \frac{\left\lfloor \frac{n}{\varphi} \right\rfloor + 1}{\varphi} \right\rfloor = n - \left\lfloor \frac{n}{\varphi} \right\rfloor + \left\lfloor \frac{\left\lfloor \frac{\left\lfloor \frac{n}{\varphi} \right\rfloor}{\varphi} \right\rfloor + 1}{\varphi} \right\rfloor$$
$$\vdots$$
$$= n - \left\lfloor \frac{n}{\varphi} \right\rfloor + \left\lfloor \frac{\left\lfloor \frac{n}{\varphi} \right\rfloor}{\varphi} \right\rfloor - \left\lfloor \frac{\left\lfloor \frac{\left\lfloor \frac{n}{\varphi} \right\rfloor}{\varphi} \right\rfloor}{\varphi} \right\rfloor + \dots$$

for any positive integer n.

Problem 3 Let us call a sequence $(b_1, b_2, ...)$ of positive integers fast-growing if $b_{n+1} \ge b_n + 2$ for all $n \ge 1$. Also, for a sequence a = (a(1), a(2), ...) of real numbers and a sequence $b = (b_1, b_2, ...)$ of positive integers, let us denote

$$S(a,b) = \sum_{n=1}^{\infty} |a(b_n) + a(b_n+1) + \dots + a(b_{n+1}-1)|$$

1. Do there exist two fast-growing sequences $b = (b_1, b_2, ...), c = (c_1, c_2, ...)$ such that for every sequence a = (a(1), a(2), ...), if all the series

$$\sum_{n=1}^{\infty} a(n) \,, \quad S(a,b) \quad \text{and} \quad S(a,c)$$

are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent?

2. Do there exist three fast-growing sequences $b = (b_1, b_2, ...), c = (c_1, c_2, ...), d = (d_1, d_2, ...)$ such that for every sequence a = (a(1), a(2), ...), if all the series

$$S(a,b)$$
, $S(a,c)$ and $S(a,d)$

are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent?

[Tomáš Bárta / Charles University, Prague]

Solution 2. Yes. Take $b_n = 2n - 1$, $c_n = 2n$, and $d_n = 3n - 2$. So, the convergent series are

$$|a_1 + a_2| + |a_3 + a_4| + |a_5 + a_6| + \dots$$

$$|a_2 + a_3| + |a_4 + a_5| + |a_6 + a_7| + \dots$$

$$|a_1 + a_2 + a_3| + |a_4 + a_5 + a_6| + \dots$$

We have $|a_1| = |a_1 + a_2 + a_3 - (a_2 + a_3)| \le |a_1 + a_2 + a_3| + |a_2 + a_3|$, similarly $|a_3| \le |a_1 + a_2 + a_3| + |a_1 + a_2|$. Further, $|a_2| = |a_1 + a_2 - a_1| \le |a_1 + a_2| + |a_1| \le |a_1 + a_2| + |a_1 + a_2 + a_3| + |a_2 + a_3| + |a_2 + a_3|$. The same holds for any triplet a_{3k+1} , a_{3k+2} , a_{3k+3} . Together we have

$$|a_{3k+1}| + |a_{3k+2}| + |a_{3k+3}| \le 3(|a_{3k+1} + a_{3k+2}| + |a_{3k+2} + a_{3k+3}| + |a_{3k+1} + a_{3k+2} + a_{3k+3}|).$$

It follows that the sequence of partial sums $\sum_{n=1}^{N} |a_n|$ is bounded by $3(S_1 + S_2 + S_3)$, where S_1, S_2, S_3 are sums of the three given series respectively.

1. No. Case 1: there exists n_0 such that $b_{n+1} = b_n + 2$, $c_{n+1} = c_n + 2$ for all $n \ge n_0$. Then for $a_n = (-1)^n/n$ we have $|a(b_n) + a(b_n + 1)| = 0 = |a(c_n) + a(c_n + 1)|$ for all $n \ge n_0$, so both series $\sum |a(b_n) + \dots + a(b_{n+1} - 1)|$ and $\sum |a(c_n) + \dots + a(c_{n+1} - 1)|$ converge, also $\sum a_n$ is convergent, but $\sum |a_n| = \sum 1/n = +\infty$.

Case 2: Either (b_n) has infinitely many elements with $b_{n+1} \ge b_n + 3$ or (c_n) has this property. Let WLOG (b_n) has the property. Then for each n satisfying $b_{n+1} \ge b_n + 3$, the terms $a(b_n)$, $a(b_n + 1)$, $a(b_n + 2)$ are among the summands in $|a(b_n) + \cdots + a(b_{n+1} - 1)|$, let us call it the three terms 'are in the same b-group'. However, either $a(b_n)$, $a(b_n + 1)$ are in the same c-group (if $b_n + 1 \ne c_k$ for all k) or $a(b_n + 1)$, $a(b_n + 2)$ are in the same c-group (if $b_n + 1 = c_k$ for some k). Hence, we have infinitely many couples $(a(i_k), a(i_k + 1))$, $k = 1, 2, \ldots$ with each couple being in the same b-group and also in the same c-group. Now, it is sufficient to put $a(i_k) = 1/k$, $a(i_k + 1) = -1/k$ (we can assume $i_{k+1} > i_k + 1$) and all the remaining a(n) = 0. Then all the summands in $\sum |a(b_n) + \cdots + a(b_{n+1} - 1)|$ and $\sum |a(c_n) + \cdots + a(c_{n+1} - 1)|$ are zero and obviously, $\sum a_n$ is convergent (its partial sums are either 0 or 1/k), but $\sum |a_n| = +\infty$ since it contains all 1/n and has non-negative terms.

Problem 4 Let $n \ge 2$ be an integer, and let A be an $n \times n$ real matrix with minimal polynomial $x^n + x - 1$. Show that

$$\operatorname{tr}((nA^{n-1}+I)^{-1}A^{n-2}) = 0.$$

Here, $\operatorname{tr}(B) = \sum_{i=1}^{n} b_{ii}$ denotes the trace of the matrix $B = (b_{ij})_{i,j=1}^{n}$. [Marcin J. Zygmunt / University of Silesia in Katowice]

Solution The eigenvalues $\lambda_1, \ldots, \lambda_n$ of the matrix A satisfy equality $\lambda^n + \lambda = 1$, i.e. they are zeroes of the polynomial $\alpha(z) = z^n + z - 1$. The trace in question is equal to

$$\sum_{k=1}^n \frac{\lambda_k^{n-2}}{n\lambda_k^{n-1}+1}\,,$$

where λ_k are the eigenvalues of A. We need the following two lemmas

Lemma 1. Let
$$P(z) = a \prod_{k=1}^{n} (z - a_k)$$
. Then $\frac{P'(z)}{P(z)} = \sum_{k=1}^{n} \frac{1}{z - a_k}$ for $z \neq a_1, \dots, a_n$.
Proof We have $P'(z) = a \sum_{k=1}^{n} \prod (z - a_k)$. But

Proof We have $P'(z) = a \sum_{k=1}^{\infty} \prod_{j \neq k} (z - a_j)$. Bu

$$\frac{\prod_{j \neq k} (z - a_j)}{\prod_{j=1}^n (z - a_j)} = \frac{1}{z - a_k}$$

for fixed $1 \leq k \leq n$. Hence

$$\frac{P'(z)}{P(z)} = \sum_{k=1}^{n} \frac{\prod_{j \neq k} (z - a_j)}{\prod_{j=1}^{n} (z - a_j)} = \sum_{k=1}^{n} \frac{1}{z - a_k}.$$

Lemma 2. Let z_1, \ldots, z_n be the roots of polynomial P of n-th degree, which are all distinct. Then

$$\sum_{k=1}^{n} \frac{P''(z_k)}{P'(z_k)} = 0.$$

Proof Let w_1, \ldots, w_{n-1} be roots of the derivative P'. Since all roots of P are distinct, the numbers w_1, \ldots, w_{n-1} are all different from z_1, \ldots, z_n , or equivalently $P'(z_j) \neq 0$ for all $j = 1, \ldots, n$. Now Lemma 1. applied to the derivative P' gives $\frac{P''(z)}{P'(z)} = \sum_{j=1}^{n-1} \frac{1}{z - w_j}$ so $\sum_{k=1}^n \frac{P''(z_k)}{P'(z_k)} = \sum_{k=1}^n \sum_{j=1}^{n-1} \frac{1}{z_k - w_j} = \sum_{j=1}^{n-1} \sum_{k=1}^n \frac{(-1)}{w_j - z_k} = \sum_{j=1}^{n-1} \left(-\frac{P'(w_j)}{P(w_j)} \right) = 0.$

The zeroes of $\alpha(z)$ are distinct because for every root z_0 of α' (which satisfies $\alpha(z_0)' = nz_0^{n-1} + 1 = 0$) we have

$$\alpha(z_0) = z_0^n + z_0 - 1 = \frac{n-1}{n} z_0 - 1 = \frac{n-1}{n^{1+1/(n-1)}} \epsilon_{n-1}^k - 1 \neq 0$$

where ϵ_{n-1} is a root of -1 of degree n-1. Thus Lemma 2 can be applied and it gives

$$0 = \sum_{k=1}^{n} \frac{\alpha''(\lambda_k)}{\alpha'(\lambda_k)} = \sum_{k=1}^{n} \frac{n(n-1)\lambda_k^{n-2}}{n\lambda_k^{n-1}+1} = n(n-1)\sum_{k=1}^{n} \frac{\lambda_k^{n-2}}{n\lambda_k^{n-1}+1} = n(n-1)\operatorname{tr}\left(\left(nA^{n-1}+I\right)^{-1}A^{n-2}\right),$$

which proves the desired equality.