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Problem 1 Let a > 2 be an integer. Prove that there exists a positive integer b with the following property:
For each positive integer n, there is a prime number p = p(a,b,n) such that a™ + b is divisible by p but not
divisible by p?. [Arturas Dubickas / Vilnius University]

Solution Assume first that a = 2. Select b = 10. Then, for n = 1, the number a™ + b = 2! + 10 = 12 is
divisible by 3 but not by 32, while for n > 2 the number 2" + 10 is divisible by 2 but not by 22. Similarly, for
a = 2™, where m > 2, it is clear that for b = 10 and for each positive integer n the number a™ + b = 2" + 10
is divisible by 2 but not by 22.

It remains to consider the case when a has an odd prime factor. Let ¢ be an odd prime factor of a. If ¢ | a
but ¢? { a, then, selecting b = a, we see that a™ + b = a™ + a is divisible by ¢ but not by ¢?. (For n = 1 we
have a" + a = 2a, so this is also true.) If ¢® | a, then, choosing b = ¢, we see that for each n > 1 the number
a™ + b= a" + g is divisible by ¢ but not by ¢>. O
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Problem 2 Find all real numbers x > 1 that satisfy the equality
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for all positive integers n.

Here, |t] is the integer part of t, i.e. the integer such that [t| <t < |t] + 1.
[Marcin J. Zygmunt / University of Silesia in Katowice]

Solution The assumption that = > 1 makes the sum on the right-hand side of the equation finite. Putting
now L%J for n in the equation gives
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which, added to the equation, gives
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which has the only solution greater that 1 equal to ¢ = +2f.

It remains only to show that for x = ¢ the equality is satisfied for all positive integers n. So let % = {%J + ¢,
with 0 < e < 1. Now
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so —¢ + and — — ¢ are either both nonnegative or both negative, and we have the equality
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as |—a] = —|a] — 1 for any noninteger «. Thus
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for any positive integer n. |
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Problem 3 Let us call a sequence (b1, b, ...) of positive integers fast-growing if b,11 > b, + 2 for all n > 1.
Also, for a sequence a = (a(l), a(2),.. ) of real numbers and a sequence b = (b1, b, . ..) of positive integers, let
us denote

S(a,b) = la(by) + a(bn + 1) + -+ albpsr — 1)

1. Do there exist two fast-growing sequences b = (by,ba,...), ¢ = (c1,¢2,...) such that for every sequence
a= (a(l)7 a(2),.. .), if all the series

Za(n), S(a,b) and S(a,c)

n=1

o0
are convergent, then the series > |a(n)| is also convergent?
n=1
2. Do there exist three fast-growing sequences b = (by,bs,...), ¢ = (¢1,¢2,...), d = (d1,ds,...) such that
for every sequence a = (a(1),a(2),...), if all the series

S(a,b), S(a,c) and S(a,d)

o0
are convergent, then the series > |a(n)| is also convergent?
n=1

[Tomas Barta / Charles University, Prague]

Solution 2. Yes. Take b, =2n — 1, ¢, = 2n, and d,, = 3n — 2. So, the convergent series are

lay + az| + |az + as| + |as + ag| + ...
lag + a3| + |ag + as| + |ag + a7 + ...
\a1+a2+a3|—|—\a4—|—a5+a6|—|—....

We have |a1]| = |a1 + a2 + a3 — (a2 + a3)| < a1 + a2 + as| + |az + as|, similarly |as| < |a; + as + az| + |a1 + az].
Further, |az| = |a1 4+ a2 — a1| < |ay + az| + |a1]| < |a1 + az| + a1 + a2 + a3| + |az2 + az|. The same holds for any
triplet ask+1, Gskt2, ask+3. Together we have

lask+1| + |askra| + |askrs| < 3(|ask+1 + askpt2| + |ask+2 + ask+3| + |asp+1 + ask+2 + aspts))-

It follows that the sequence of partial sums 25:1 |an| is bounded by 3(S; + Sz + S3), where Sy, Sa, S5 are sums
of the three given series respectively.

1. No. Case 1: there exists ng such that b,+1 = b, +2, 1 = ¢, +2 for all n > ng. Then for a,, = (=1)"/n
we have |a(b,) + a(by, +1)| =0 = |a(c,) + a(e, + 1) for all n > ng, so both series Y |a(b,) + -+ + a(bp41 — 1)|
and Y la(cn) 4+ -+ + a(cpy1 — 1)| converge, also > a,, is convergent, but > |a,| = > 1/n = +oo.

Case 2: Either (b,) has infinitely many elements with b, +; > b, + 3 or (¢,,) has this property. Let WLOG
(b,) has the property. Then for each n satisfying b, 11 > b, + 3, the terms a(b,), a(b, +1), a(b, +2) are among
the summands in |a(b,) + -+ - + a(bp+1 — 1)], let us call it the three terms ‘are in the same b-group’. However,
either a(by,), a(b, + 1) are in the same c-group (if b, + 1 # ¢, for all k) or a(b, + 1), a(b, + 2) are in the same
c-group (if b, + 1 = ¢, for some k). Hence, we have infinitely many couples (a(ix), a(ix + 1)), k =1,2,... with
each couple being in the same b-group and also in the same c¢-group. Now, it is sufficient to put a(iy) = 1/k,
a(iy +1) = —1/k (we can assume ix41 > i + 1) and all the remaining a(n) = 0. Then all the summands in
dola(bn) + -+ a(bpyr — 1)| and > |a(c,) + - -+ + a(epy1 — 1)] are zero and obviously, > a,, is convergent (its
partial sums are either 0 or 1/k), but > |a,| = +o0 since it contains all 1/n and has non-negative terms. O



The 3274 Annual Vojtéch Jarnik
International Mathematical Competition
Ostrava, 15* May 2025
Category I

Problem 4 Let n > 2 be an integer, and let A be an n X n real matrix with minimal polynomial =" + x — 1.
Show that
tr((nA" ' +1)71A" %) = 0.

n
Here, tr(B) = Zl bii denotes the trace of the matrix B = (bi;)};_;-
1=
[Marcin J. Zygmunt / University of Silesia in Katowice]

Solution The eigenvalues A1, ...\, of the matrix A satisfy equality A" + A = 1, i.e. they are zeroes of the
polynomial «(z) = 2™ + z — 1. The trace in question is equal to
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where \j, are the eigenvalues of A. We need the following two lemmas
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Proof We have P'(z) = az H z —a;). But
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for fixed 1 < k < n. Hence
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Lemma 2. Let zy,..., 2, be the roots of polynomial P of n-th degree, which are all distinct. Then
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Proof Let wy,...,w,_1 beroots of the derivative P’. Since all roots of P are distinct, the numbers wy, ..., w,_1

are all different from z1,..., z,, or equivalently P’(z;) # 0 for all j =1,...,n. Now Lemma 1. applied to the
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The zeroes of a(z) are distinct because for every root z of o’ (which satisfies a(zp)’ = nzd ' +1 = 0) we
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where €,_1 is a root of —1 of degree n—1. Thus Lemma 2 can be applied and it gives
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which proves the desired equality. O



