The 32nd Annual Vojtěch Jarník International Mathematical Competition Ostrava, 1st May 2025 Category II

Problem 1 Let $x_0 = a$, $x_1 = b$, $x_2 = c$ for given numbers $a, b, c \in \mathbb{R}$, and let $x_{n+2} = \frac{x_n + x_{n-1}}{2}$ for $n \ge 1$. Show that the sequence $(x_n)_{n=0}^{\infty}$ converges, and find its limit. [10 points]

Problem 2 Let A, B be two $n \times n$ complex matrices of the same rank, and let $k \in \mathbb{N}$. Prove that $A^{k+1}B^k = A$ if and only if $B^{k+1}A^k = B$. [10 points]

Problem 3 Evaluate the integral

$$\int_{0}^{\infty} \frac{\log(x+2)}{x^2+3x+2} \, \mathrm{d}x \, .$$

[10 points]

Problem 4 Let $D = \{z : |z| < 1\}$ be the unit disk in the complex plane, and suppose that $f: D \to D$ is a holomorphic function fulfilling the property $\lim_{|z|\to 1} |f(z)| = 1$. Let the Taylor series of f be $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Prove that $\sum_{n=0}^{\infty} n|a_n|^2$ is equal to the number of zeros of f (counted with multiplicities). [10 points]