The 32nd Annual Vojtěch Jarník International Mathematical Competition Ostrava, 1st May 2025 Category I

Problem 1 Let $a \ge 2$ be an integer. Prove that there exists a positive integer b with the following property: For each positive integer n, there is a prime number p = p(a, b, n) such that $a^n + b$ is divisible by p but not divisible by p^2 . [10 points]

Problem 2 Find all real numbers x > 1 that satisfy the equality

$$\left\lfloor \frac{n+1}{x} \right\rfloor = n - \left\lfloor \frac{n}{x} \right\rfloor + \left\lfloor \frac{\left\lfloor \frac{n}{x} \right\rfloor}{x} \right\rfloor - \left\lfloor \frac{\left\lfloor \frac{\left\lfloor \frac{n}{x} \right\rfloor}{x} \right\rfloor}{x} \right\rfloor + \dots$$

for all positive integers n.

Here, $\lfloor t \rfloor$ is the integer part of t, i.e. the integer such that $\lfloor t \rfloor \leq t < \lfloor t \rfloor + 1$.

Problem 3 Let us call a sequence $(b_1, b_2, ...)$ of positive integers fast-growing if $b_{n+1} \ge b_n + 2$ for all $n \ge 1$. Also, for a sequence a = (a(1), a(2), ...) of real numbers and a sequence $b = (b_1, b_2, ...)$ of positive integers, let us denote

$$S(a,b) = \sum_{n=1}^{\infty} |a(b_n) + a(b_n + 1) + \dots + a(b_{n+1} - 1)|$$

1. Do there exist two fast-growing sequences $b = (b_1, b_2, ...), c = (c_1, c_2, ...)$ such that for every sequence a = (a(1), a(2), ...), if all the series

$$\sum_{n=1}^{\infty} a(n) \,, \quad S(a,b) \quad \text{and} \quad S(a,c)$$

are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent?

2. Do there exist three fast-growing sequences $b = (b_1, b_2, ...), c = (c_1, c_2, ...), d = (d_1, d_2, ...)$ such that for every sequence a = (a(1), a(2), ...), if all the series

 $S(a,b), \quad S(a,c) \quad and \quad S(a,d)$

are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent?

[10 points]

Problem 4 Let $n \ge 2$ be an integer, and let A be an $n \times n$ real matrix with minimal polynomial $x^n + x - 1$. Show that

$$tr((nA^{n-1}+I)^{-1}A^{n-2}) = 0.$$

Here, $\operatorname{tr}(B) = \sum_{i=1}^{n} b_{ii}$ denotes the trace of the matrix $B = (b_{ij})_{i,j=1}^{n}$. [10 points]

[10 points]