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Problem 1 Suppose that f : [−1, 1] → R is continuous and that(∫ 1

−1

exf(x) dx

)2

≥
(∫ 1

−1

f(x) dx

)(∫ 1

−1

e2xf(x) dx

)
.

Prove that there exists a point c ∈ (−1, 1) such that f(c) = 0.
[Robert Skiba /Nicolaus Copernicus University in Toruń]

Solution Assume on the contrary that f(x) ̸= 0 for all x ∈ (−1, 1). Then f(x) must be everywhere positive
or negative. By replacing f(x) with −f(x) if necessary, we can assume that f(x) > 0 on (−1, 1). Then we can
write

f(x) =
(√

f(x)
)2

.

Hence, we get (∫ 1

−1

ex
(√

f(x)
)2

dx

)2

≥
(∫ 1

−1

f(x)dx

)(∫ 1

−1

e2xf(x)dx

)
. (1)

On the other hand, the Cauchy-Schwarz inequality implies that(∫ 1

−1

ex
(√

f(x)
)2

dx

)2

=

(∫ 1

−1

(
ex
√
f(x)

)√
f(x)dx

)2

≤
(∫ 1

−1

e2xf(x)dx

)(∫ 1

−1

f(x)dx

)
. (2)

Taking into account (1) and (2), we get(∫ 1

−1

ex
√
f(x)

√
f(x)dx

)2

=

(∫ 1

−1

f(x)dx

)(∫ 1

−1

e2xf(x)dx

)
.

On the other hand, it is well known that the equality holds in the Cauchy-Schwarz inequality if and only if
ex
√
f(x) is a constant multiple of

√
f(x), but this is not possible. Therefore, we can conclude, by a contradiction

argument, that there exists a point c ∈ (−1, 1) such that f(c) = 0. □
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Problem 2 A real 2024×2024 matrix A is called nice if (Av, v) = 1 for every vector v ∈ R2024 with unit norm.
a) Prove that the only nice matrix such that all of its eigenvalues are real is the identity matrix.
b) Find an example of a nice non-identity matrix. [Stoyan Apostolov / Sofia University]

Solution Using the properties of transposed matrices, we obtain:

2(Av, v) = (Av, v) + (v,Av) = (Av, v) + (AT v, v) = ((A+AT )v, v) = 2 (1)

for every unit vector v. Since A + AT is symmetric, all eigenvalues of A + AT are real. From (1), it follows
that all eigenvalues of A+AT are equal to 2. But every symmetric matrix is diagonalizable, therefore A+AT

is similar to a scalar matrix with 2 along the diagonal, the matrix 2I (where I denotes the identity matrix of
order n). It is directly seen that any matrix similar to a scalar matrix is also scalar. Thus, A + AT = 2I .
Consequently A is normal. Since its characteristic roots are real, it is Hermitian and hence symmetric. Thus,
from A+AT = 2I, we obtain A = I.
b) Let B be a nonzero antisymmetric matrix. It is directly verified that (Bv, v) = 0 for every vector v. Then

A := B + I is non-identity and satisfies the condition of the problem. □
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Problem 3 Let a1 > 0 and for n ≥ 1 define

an+1 = an +
1

a1 + a2 + . . .+ an
.

Prove that lim
n→∞

a2n
lnn

= 2. [Teodor Chelmus, /Alexandru Ioan Cuza University of Ias, i]

Solution Since a1 > 0, it follows that the given sequence is strictly nondecreasing. Let ℓ ∈ (0,∞] the limit of
the sequence (an)n∈N∗ . If ℓ would be finite, then

1

ℓ
= lim

n→∞

1

an
= lim

n→∞

n

a1 + a2 + . . .+ an
= lim

n→∞
n(an+1 − an).

Using the telescoping technique, and the limit above, one has

ℓ− a1 = lim
n→∞

an − a1 =

∞∑
n=1

(an+1 − an) ∼
∞∑

n=1

1

n
= ∞.

Contradiction. So an → ∞. Further we will prove that that an goes to infinity in same manner as the sequence
(
√
2 lnn)n∈N∗ does. The presence of the lnn suggests to us to think at harmonic series and the fact that

lim
n→∞

1

lnn

(
1 +

1

2
+ . . .+

1

n

)
= 1.

It is enough to show that

lim
n→∞

a2n

1 +
1

2
+ . . .+

1

n

= lim
n→∞

a2n − a21

1 +
1

2
+ . . .+

1

n

= 2

Let Sn = a1 + a2 + . . .+ an. We will use, again, the telescoping technique to write that

lim
n→∞

a2n − a21 =

∞∑
n=1

(a2n+1 − a2n) =

∞∑
n=1

an+1 + an
Sn

(1)

Taking into account that an+1 − an =
1

Sn
, we have

a2n+1 − a2n =
an+1 + an

Sn
=

an
Sn

(
an+1

an
+ 1

)
(2)

Observe now that

Sn

an
=

Sn−1 + an
an

=
Sn−1

an
+ 1 =⇒ Sn

an
− Sn−1

an−1
= 1 +

Sn−1

an
− Sn−1

an−1
= 1 +

1

anan−1
.

Passing to limit, the sequence (Sn/an − Sn−1/an−1) is convergent to 1, and using, again, that if a sequence
admits a limits (finite or not), then the mean values sequence (Cesaro mean) admits the same limit, we deduce
that

1 = lim
n→∞

(
Sn

an
− Sn−1

an−1

)
= lim

p→∞

1

p

p∑
n=1

(
Sn

an
− Sn−1

an−1

)
= lim

p→∞

Sp

pap
.

Going back in (2), and using that
an+1

an
→ 1, is follows that

lim
n→∞

n(a2n+1 − a2n) = lim
n→∞

nan
Sn

(
an+1

an
+ 1

)
= 2.

The proof is complete. □
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Problem 4 Let (bn)n≥0 be a sequence of positive integers satisfying bn = d

(
n−1∑
k=0

bk

)
for all n ≥ 1. (By d(m)

we denote the number of positive divisors of m.)
a) Prove that (bn)n≥0 is unbounded.
b) Prove that there are infinitely many n such that bn > bn+1. [Adrian Beker /University of Zagreb]

Solution Define sn =
∑n−1

k=0 ak for n ≥ 0. Thus, (sn)n≥0 is a strictly increasing sequence such that s0 = 0.
Moreover, an = d(sn) for all n ≥ 1.

(i) Suppose for contradiction that there exists C ∈ N such that an ≤ C for all n ≥ 0. Enumerate the primes
as a strictly increasing sequence (pk)k≥1. By the Chinese Remainder Theorem, there exists a positive integer x
such that x ≡ −j (mod pCj ) for all 1 ≤ j ≤ C. In particular, we have d(x+ j) ≥ C + 1 for all 1 ≤ j ≤ C. Now
choose the least n ≥ 0 such that sn > x. Then we must have n ≥ 1, so by minimality of n, we have sn−1 ≤ x.
Thus,

x < sn = sn−1 + an−1 ≤ x+ C,

so it follows that an = d(sn) > C, which is a contradiction.

(ii) We begin by establishing the following auxiliary result:

Lemma Given a positive integer a, let f(a) be the length of the longest arithmetic progression of positive
integers with common difference a all of whose terms have exactly a divisors. Then we have f(a) ≪ε a1+ε for
any ε > 0.

Proof We may assume that ε is small and fixed and a is large. Enumerate the primes and the primes not
dividing a as strictly increasing sequences (pk)k≥1 and (qk)k≥1 respectively. Then we have qk ≤ pk+ω(a) for all

k ≥ 1. Fix k ≥ 1, write ℓ = vpk
(a) and consider the number b =

∏ℓ+1
j=1 q

pk

j . We claim that f(a) < b. Indeed,
consider any arithmetic progression s, s + a, . . . , s + (b − 1)a of length b with common difference a. Since a
and b are coprime, it follows that {0, a, . . . , (b − 1)a} is a complete residue system modulo b, and hence so is
{s, s+ a, . . . , s+ (b− 1)a}. In particular, by the Chinese Remainder Theorem, there exists i ∈ {0, 1, . . . , b− 1}
such that s + ia ≡ qpk−1

j (mod qpk

j ) for all 1 ≤ j ≤ ℓ + 1. But this means that vqj (s + ia) = pk − 1 for all

1 ≤ j ≤ ℓ+ 1 and hence that pℓ+1
k | d(s+ ia). In particular, we cannot have d(s+ ia) = a, so the claim follows.

It remains to find a good upper bound on b for various values of k.
Suppose that f(a) ≥ a1+ε. Since b ≤ q

(ℓ+1)pk

ℓ+1 ≤ p
(ℓ+1)pk

ℓ+ω(a)+1, it follows by taking logarithms that (ℓ +

1) log pω(a)+ℓ+1 ≥ 1+ε
pk

log a. By a weak version of the prime number theorem, we have π(x) = Ω
(

x
log x

)
for x ≥ 2, so it follows that pm = O(m logm) for m ≥ 2. Thus, log pm ≤ logm + log logm + O(1) for
m ≥ 2, so log pm ≤

(
1 + ε

6

)
logm if m is large enough. On the other hand, it is clear that ω(a), ℓ ≤ log2 a,

so m = ω(a) + ℓ + 1 satisfies m ≤ 2 log2 a + 1 ≤ 6 log a if a ≥ 2. Hence, if a is large enough, it follows that
log pm ≤

(
1 + ε

3

)
log log a, whence ℓ+1 ≥ 1+ ε

3

pk

log a
log log a if ε ∈ (0, 3). Therefore, letting x =

1+ ε
3

1+ 9
ε

log a
log log a , if pk ≤ x,

it follows that ℓ ≥ 9
ε and hence that ℓ ≥

ℓ+1
1+ ε

9
≥ 1+ ε

9

pk

log a
log log a . Therefore, we have

log a ≥
∑
pk≤x

vpk
(a) log pk ≥

(
1 +

ε

9

) log a

log log a

∑
pk≤x

log pk
pk

.

But by Mertens’ first theorem, we have
∑

pk≤x
log pk

pk
= log x+O(1), so it follows that x ≪ (log a)

1
1+ ε

9 , which is
a contradiction if a is large. Thus, the lemma is proved. □

It is now not hard to prove the desired statement. Indeed, it is a standard fact that, for any δ > 0, we have
d(m) ≪δ mδ. Hence, we have d(m) ≤ m

1
5 for all sufficiently large m. Now consider the function

g : (0,∞) → R, t 7→ t
4
5 .

Then g is differentiable with g′(t) = 4
5 t

− 1
5 , which is a decreasing function. By the Mean Value Theorem, for all

sufficiently large n we have

g(sn+1)− g(sn) ≤ (sn+1 − sn)g
′(sn) = d(sn)g

′(sn) ≤ s
1
5
n · 4

5
s
− 1

5
n =

4

5
.



It follows that g(sn) ≪ n, whence sn ≪ n
5
4 and hence there is a constant B such that an ≤ Bn

1
4 for all n ≥ 1.

Now suppose for contradiction that there exists N ≥ 0 such that an ≤ an+1 for all n > N . By the Lemma for
ε = 1, it follows that for each a ∈ N there are at most Ca2 integers n > N such that an = a, where C is some
absolute constant. It now follows that C

∑
a≤BM

1
4
a2 ≥ M − N for all M > N , which is a contradiction for

large M since
∑

a≤x a
2 = O(x3). □


