The $31^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $13^{\text {th }}$ April 2024
Category II

Problem 1 Suppose that $f:[-1,1] \rightarrow \mathbb{R}$ is continuous and that

$$
\left(\int_{-1}^{1} \mathrm{e}^{x} f(x) \mathrm{d} x\right)^{2} \geq\left(\int_{-1}^{1} f(x) \mathrm{d} x\right)\left(\int_{-1}^{1} \mathrm{e}^{2 x} f(x) \mathrm{d} x\right)
$$

Prove that there exists a point $c \in(-1,1)$ such that $f(c)=0$.
[Robert Skiba / Nicolaus Copernicus University in Toruń]
Solution Assume on the contrary that $f(x) \neq 0$ for all $x \in(-1,1)$. Then $f(x)$ must be everywhere positive or negative. By replacing $f(x)$ with $-f(x)$ if necessary, we can assume that $f(x)>0$ on $(-1,1)$. Then we can write

$$
f(x)=(\sqrt{f(x)})^{2}
$$

Hence, we get

$$
\begin{equation*}
\left(\int_{-1}^{1} \mathrm{e}^{x}(\sqrt{f(x)})^{2} \mathrm{~d} x\right)^{2} \geq\left(\int_{-1}^{1} f(x) \mathrm{d} x\right)\left(\int_{-1}^{1} \mathrm{e}^{2 x} f(x) \mathrm{d} x\right) \tag{1}
\end{equation*}
$$

On the other hand, the Cauchy-Schwarz inequality implies that

$$
\begin{equation*}
\left(\int_{-1}^{1} \mathrm{e}^{x}(\sqrt{f(x)})^{2} \mathrm{~d} x\right)^{2}=\left(\int_{-1}^{1}\left(\mathrm{e}^{x} \sqrt{f(x)}\right) \sqrt{f(x)} \mathrm{d} x\right)^{2} \leq\left(\int_{-1}^{1} \mathrm{e}^{2 x} f(x) \mathrm{d} x\right)\left(\int_{-1}^{1} f(x) \mathrm{d} x\right) \tag{2}
\end{equation*}
$$

Taking into account (1) and (2), we get

$$
\left(\int_{-1}^{1} \mathrm{e}^{x} \sqrt{f(x)} \sqrt{f(x)} \mathrm{d} x\right)^{2}=\left(\int_{-1}^{1} f(x) \mathrm{d} x\right)\left(\int_{-1}^{1} \mathrm{e}^{2 x} f(x) \mathrm{d} x\right)
$$

On the other hand, it is well known that the equality holds in the Cauchy-Schwarz inequality if and only if $\mathrm{e}^{x} \sqrt{f(x)}$ is a constant multiple of $\sqrt{f(x)}$, but this is not possible. Therefore, we can conclude, by a contradiction argument, that there exists a point $c \in(-1,1)$ such that $f(c)=0$.

The $31^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $13^{\text {th }}$ April 2024
Category II

Problem $2 A$ real 2024×2024 matrix A is called nice if $(A v, v)=1$ for every vector $v \in \mathbb{R}^{2024}$ with unit norm.
a) Prove that the only nice matrix such that all of its eigenvalues are real is the identity matrix.
b) Find an example of a nice non-identity matrix.
[Stoyan Apostolov / Sofia University]
Solution Using the properties of transposed matrices, we obtain:

$$
\begin{equation*}
2(A v, v)=(A v, v)+(v, A v)=(A v, v)+\left(A^{T} v, v\right)=\left(\left(A+A^{T}\right) v, v\right)=2 \tag{1}
\end{equation*}
$$

for every unit vector v. Since $A+A^{T}$ is symmetric, all eigenvalues of $A+A^{T}$ are real. From (1), it follows that all eigenvalues of $A+A^{T}$ are equal to 2 . But every symmetric matrix is diagonalizable, therefore $A+A^{T}$ is similar to a scalar matrix with 2 along the diagonal, the matrix $2 I$ (where I denotes the identity matrix of order n). It is directly seen that any matrix similar to a scalar matrix is also scalar. Thus, $A+A^{T}=2 I$. Consequently A is normal. Since its characteristic roots are real, it is Hermitian and hence symmetric. Thus, from $A+A^{T}=2 I$, we obtain $A=I$.
b) Let B be a nonzero antisymmetric matrix. It is directly verified that $(B v, v)=0$ for every vector v. Then $A:=B+I$ is non-identity and satisfies the condition of the problem.

The $31^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $13^{\text {th }}$ April 2024
Category II

Problem 3 Let $a_{1}>0$ and for $n \geq 1$ define

$$
a_{n+1}=a_{n}+\frac{1}{a_{1}+a_{2}+\ldots+a_{n}}
$$

Prove that $\lim _{n \rightarrow \infty} \frac{a_{n}^{2}}{\ln n}=2$.
[Teodor Chelmuș / Alexandru Ioan Cuza University of Iași]
Solution Since $a_{1}>0$, it follows that the given sequence is strictly nondecreasing. Let $\ell \in(0, \infty]$ the limit of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}^{*}}$. If ℓ would be finite, then

$$
\frac{1}{\ell}=\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\lim _{n \rightarrow \infty} \frac{n}{a_{1}+a_{2}+\ldots+a_{n}}=\lim _{n \rightarrow \infty} n\left(a_{n+1}-a_{n}\right) .
$$

Using the telescoping technique, and the limit above, one has

$$
\ell-a_{1}=\lim _{n \rightarrow \infty} a_{n}-a_{1}=\sum_{n=1}^{\infty}\left(a_{n+1}-a_{n}\right) \sim \sum_{n=1}^{\infty} \frac{1}{n}=\infty .
$$

Contradiction. So $a_{n} \rightarrow \infty$. Further we will prove that that a_{n} goes to infinity in same manner as the sequence $(\sqrt{2 \ln n})_{n \in \mathbb{N}^{*}}$ does. The presence of the $\ln n$ suggests to us to think at harmonic series and the fact that

$$
\lim _{n \rightarrow \infty} \frac{1}{\ln n}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)=1
$$

It is enough to show that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{2}}{1+\frac{1}{2}+\ldots+\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{a_{n}^{2}-a_{1}^{2}}{1+\frac{1}{2}+\ldots+\frac{1}{n}}=2
$$

Let $S_{n}=a_{1}+a_{2}+\ldots+a_{n}$. We will use, again, the telescoping technique to write that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}^{2}-a_{1}^{2}=\sum_{n=1}^{\infty}\left(a_{n+1}^{2}-a_{n}^{2}\right)=\sum_{n=1}^{\infty} \frac{a_{n+1}+a_{n}}{S_{n}} \tag{1}
\end{equation*}
$$

Taking into account that $a_{n+1}-a_{n}=\frac{1}{S_{n}}$, we have

$$
\begin{equation*}
a_{n+1}^{2}-a_{n}^{2}=\frac{a_{n+1}+a_{n}}{S_{n}}=\frac{a_{n}}{S_{n}}\left(\frac{a_{n+1}}{a_{n}}+1\right) \tag{2}
\end{equation*}
$$

Observe now that

$$
\frac{S_{n}}{a_{n}}=\frac{S_{n-1}+a_{n}}{a_{n}}=\frac{S_{n-1}}{a_{n}}+1 \Longrightarrow \frac{S_{n}}{a_{n}}-\frac{S_{n-1}}{a_{n-1}}=1+\frac{S_{n-1}}{a_{n}}-\frac{S_{n-1}}{a_{n-1}}=1+\frac{1}{a_{n} a_{n-1}} .
$$

Passing to limit, the sequence $\left(S_{n} / a_{n}-S_{n-1} / a_{n-1}\right)$ is convergent to 1 , and using, again, that if a sequence admits a limits (finite or not), then the mean values sequence (Cesaro mean) admits the same limit, we deduce that

$$
1=\lim _{n \rightarrow \infty}\left(\frac{S_{n}}{a_{n}}-\frac{S_{n-1}}{a_{n-1}}\right)=\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{n=1}^{p}\left(\frac{S_{n}}{a_{n}}-\frac{S_{n-1}}{a_{n-1}}\right)=\lim _{p \rightarrow \infty} \frac{S_{p}}{p a_{p}} .
$$

Going back in (2), and using that $\frac{a_{n+1}}{a_{n}} \rightarrow 1$, is follows that

$$
\lim _{n \rightarrow \infty} n\left(a_{n+1}^{2}-a_{n}^{2}\right)=\lim _{n \rightarrow \infty} \frac{n a_{n}}{S_{n}}\left(\frac{a_{n+1}}{a_{n}}+1\right)=2
$$

The proof is complete.

The $31^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $13^{\text {th }}$ April 2024
Category II

Problem 4 Let $\left(b_{n}\right)_{n \geq 0}$ be a sequence of positive integers satisfying $b_{n}=d\left(\sum_{k=0}^{n-1} b_{k}\right)$ for all $n \geq 1$. (By $d(m)$
we denote the number of positive divisors of m.)
a) Prove that $\left(b_{n}\right)_{n \geq 0}$ is unbounded.
b) Prove that there are infinitely many n such that $b_{n}>b_{n+1}$. [Adrian Beker / University of Zagreb]

Solution Define $s_{n}=\sum_{k=0}^{n-1} a_{k}$ for $n \geq 0$. Thus, $\left(s_{n}\right)_{n \geq 0}$ is a strictly increasing sequence such that $s_{0}=0$. Moreover, $a_{n}=d\left(s_{n}\right)$ for all $n \geq 1$.
(i) Suppose for contradiction that there exists $C \in \mathbb{N}$ such that $a_{n} \leq C$ for all $n \geq 0$. Enumerate the primes as a strictly increasing sequence $\left(p_{k}\right)_{k \geq 1}$. By the Chinese Remainder Theorem, there exists a positive integer x such that $x \equiv-j\left(\bmod p_{j}^{C}\right)$ for all $1 \leq j \leq C$. In particular, we have $d(x+j) \geq C+1$ for all $1 \leq j \leq C$. Now choose the least $n \geq 0$ such that $s_{n}>x$. Then we must have $n \geq 1$, so by minimality of n, we have $s_{n-1} \leq x$. Thus,

$$
x<s_{n}=s_{n-1}+a_{n-1} \leq x+C
$$

so it follows that $a_{n}=d\left(s_{n}\right)>C$, which is a contradiction.
(ii) We begin by establishing the following auxiliary result:

Lemma Given a positive integer a, let $f(a)$ be the length of the longest arithmetic progression of positive integers with common difference a all of whose terms have exactly a divisors. Then we have $f(a) \ll_{\varepsilon} a^{1+\varepsilon}$ for any $\varepsilon>0$.
Proof We may assume that ε is small and fixed and a is large. Enumerate the primes and the primes not dividing a as strictly increasing sequences $\left(p_{k}\right)_{k \geq 1}$ and $\left(q_{k}\right)_{k \geq 1}$ respectively. Then we have $q_{k} \leq p_{k+\omega(a)}$ for all $k \geq 1$. Fix $k \geq 1$, write $\ell=v_{p_{k}}(a)$ and consider the number $b=\prod_{j=1}^{\ell+1} q_{j}^{p_{k}}$. We claim that $f(a)<b$. Indeed, consider any arithmetic progression $s, s+a, \ldots, s+(b-1) a$ of length b with common difference a. Since a and b are coprime, it follows that $\{0, a, \ldots,(b-1) a\}$ is a complete residue system modulo b, and hence so is $\{s, s+a, \ldots, s+(b-1) a\}$. In particular, by the Chinese Remainder Theorem, there exists $i \in\{0,1, \ldots, b-1\}$ such that $s+i a \equiv q_{j}^{p_{k}-1}\left(\bmod q_{j}^{p_{k}}\right)$ for all $1 \leq j \leq \ell+1$. But this means that $v_{q_{j}}(s+i a)=p_{k}-1$ for all $1 \leq j \leq \ell+1$ and hence that $p_{k}^{\ell+1} \mid d(s+i a)$. In particular, we cannot have $d(s+i a)=a$, so the claim follows. It remains to find a good upper bound on b for various values of k.

Suppose that $f(a) \geq a^{1+\varepsilon}$. Since $b \leq q_{\ell+1}^{(\ell+1) p_{k}} \leq p_{\ell+\omega(a)+1}^{(\ell+1) p_{k}}$, it follows by taking logarithms that $(\ell+$ 1) $\log p_{\omega(a)+\ell+1} \geq \frac{1+\varepsilon}{p_{k}} \log a$. By a weak version of the prime number theorem, we have $\pi(x)=\Omega\left(\frac{x}{\log x}\right)$ for $x \geq 2$, so it follows that $p_{m}=\mathcal{O}(m \log m)$ for $m \geq 2$. Thus, $\log p_{m} \leq \log m+\log \log m+\mathcal{O}(1)$ for $m \geq 2$, so $\log p_{m} \leq\left(1+\frac{\varepsilon}{6}\right) \log m$ if m is large enough. On the other hand, it is clear that $\omega(a), \ell \leq \log _{2} a$, so $m=\omega(a)+\ell+1$ satisfies $m \leq 2 \log _{2} a+1 \leq 6 \log a$ if $a \geq 2$. Hence, if a is large enough, it follows that $\log p_{m} \leq\left(1+\frac{\varepsilon}{3}\right) \log \log a$, whence $\ell+1 \geq \frac{1+\frac{\varepsilon}{3}}{p_{k}} \frac{\log a}{\log \log a}$ if $\varepsilon \in(0,3)$. Therefore, letting $x=\frac{1+\frac{\varepsilon}{3}}{1+\frac{9}{\varepsilon}} \frac{\log a}{\log \log a}$, if $p_{k} \leq x$, it follows that $\ell \geq \frac{9}{\varepsilon}$ and hence that $\ell \geq \frac{\ell+1}{1+\frac{\varepsilon}{9}} \geq \frac{1+\frac{\varepsilon}{9}}{p_{k}} \frac{\log a}{\log \log a}$. Therefore, we have

$$
\log a \geq \sum_{p_{k} \leq x} v_{p_{k}}(a) \log p_{k} \geq\left(1+\frac{\varepsilon}{9}\right) \frac{\log a}{\log \log a} \sum_{p_{k} \leq x} \frac{\log p_{k}}{p_{k}}
$$

But by Mertens' first theorem, we have $\sum_{p_{k} \leq x} \frac{\log p_{k}}{p_{k}}=\log x+\mathcal{O}(1)$, so it follows that $x \ll(\log a)^{\frac{1}{1+\frac{\varepsilon}{9}}}$, which is a contradiction if a is large. Thus, the lemma is proved.

It is now not hard to prove the desired statement. Indeed, it is a standard fact that, for any $\delta>0$, we have $d(m) \ll_{\delta} m^{\delta}$. Hence, we have $d(m) \leq m^{\frac{1}{5}}$ for all sufficiently large m. Now consider the function

$$
g:(0, \infty) \rightarrow \mathbb{R}, \quad t \mapsto t^{\frac{4}{5}} .
$$

Then g is differentiable with $g^{\prime}(t)=\frac{4}{5} t^{-\frac{1}{5}}$, which is a decreasing function. By the Mean Value Theorem, for all sufficiently large n we have

$$
g\left(s_{n+1}\right)-g\left(s_{n}\right) \leq\left(s_{n+1}-s_{n}\right) g^{\prime}\left(s_{n}\right)=d\left(s_{n}\right) g^{\prime}\left(s_{n}\right) \leq s_{n}^{\frac{1}{5}} \cdot \frac{4}{5} s_{n}^{-\frac{1}{5}}=\frac{4}{5}
$$

It follows that $g\left(s_{n}\right) \ll n$, whence $s_{n} \ll n^{\frac{5}{4}}$ and hence there is a constant B such that $a_{n} \leq B n^{\frac{1}{4}}$ for all $n \geq 1$. Now suppose for contradiction that there exists $N \geq 0$ such that $a_{n} \leq a_{n+1}$ for all $n>N$. By the Lemma for $\varepsilon=1$, it follows that for each $a \in \mathbb{N}$ there are at most $C a^{2}$ integers $n>N$ such that $a_{n}=a$, where C is some absolute constant. It now follows that $C \sum_{a \leq B M^{\frac{1}{4}}} a^{2} \geq M-N$ for all $M>N$, which is a contradiction for large M since $\sum_{a \leq x} a^{2}=\mathcal{O}\left(x^{3}\right)$.

