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Problem 1 Let f : R → R be a continuously differentiable function. Prove that∣∣∣∣f(1)− ∫ 1

0

f(x) dx

∣∣∣∣ ≤ 1

2
max
x∈[0,1]

|f ′(x)| .

[Robert Skiba /Nicolaus Copernicus University in Toruń]

Solution We have

f(1)−
∫ 1

0

f(x)dx =

∫ 1

0

f ′(x)dx−
∫ 1

0

f(x)dx

=

∫ 1

0

f ′(x)dx−
∫ 1

0

∫ x

0

f ′(y)dydx

=

∫ 1

0

f ′(x)dx−
∫ 1

0

∫ 1

y

f ′(y)dxdy

=

∫ 1

0

f ′(x)dx−
∫ 1

0

f ′(y)

∫ 1

y

dxdy

=

∫ 1

0

f ′(x)dx−
∫ 1

0

f ′(y)(1− y)dy

=

∫ 1

0

f ′(x)dx−
∫ 1

0

f ′(x)(1− x)dx

=

∫ 1

0

f ′(x)(1− (1− x))dx

=

∫ 1

0

f ′(x)xdx.

Hence we get ∣∣∣∣f(1)− ∫ 1

0

f(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

f ′(x)xdx

∣∣∣∣ ≤ ∫ 1

0

|f ′(x)x|dx ≤
∫ 1

0

max
x∈[0,1]

|f ′(x)| · |x|dx

≤ max
x∈[0,1]

|f ′(x)|
∫ 1

0

|x|dx =
1

2
max
x∈[0,1]

|f ′(x)|.

This completes the solution. □
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Problem 2 Let n be a positive integer and let A, B be two complex nonsingular n× n matrices such that

A2B − 2ABA+BA2 = 0 .

Prove that the matrix AB−1A−1B − In is nilpotent. (Here In denotes the n× n identity matrix. A matrix X
is called nilpotent if there exists a positive integer k such that Xk = 0.)

[Pasha Zusmanovich /University of Ostrava]

Solution It is enough to prove that 1 is the only eigenvalue of AB−1A−1B.

Lemma If λ is an eigenvalue of AB−1A−1B, then 2λ−1
λ is an eigenvalue of AB−1A−1B.

Proof Since AB−1A−1B is nondegenerate, λ ̸= 0, and AB−1A−1B − λE is degenerate. Then

BA−1
(
AB−1A−1B − λE

)
= λA−1(BA−AB)A−1 + (1− λ)A−1B (1)

is degenerate.
The condition A2B−2ABA+BA2 = 0 is equivalent to the condition that A commutes with AB−BA, hence

A−1 commutes with AB−BA, and the right-hand side of (1) can be rewritten as λA−2(BA−AB)+(1−λ)A−1B.
Hence

1

λ
B−1A

(
λA−2(BA−AB) + (1− λ)A−1B

)
= B−1A−1BA− 2λ− 1

λ
E

is degenerate, i.e., 2λ−1
λ is an eigenvalue of B−1A−1BA.

The matrices B−1A−1BA and AB−1A−1B are conjugate by A, hence they have the same eigenvalues, so
2λ−1

λ is also an eigenvalue of AB−1A−1B. □

Iterating the lemma, we get that for any eigenvalue λ of AB−1A−1B, and any integer k ≥ 1,

kλ− (k − 1)

(k − 1)λ− (k − 2)

is also an eigenvalue of AB−1A−1B. Since AB−1A−1B has only a finite number of eigenvalues, we have

kλ− (k − 1)

(k − 1)λ− (k − 2)
=

k′λ− (k′ − 1)

(k′ − 1)λ− (k′ − 2)

for some (actually, infinitely many) k ̸= k′. The last equality is equivalent to (k − k′)(λ − 1)2 = 0, whence
λ = 1. □
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Problem 3 Let n be a positive integer and let G be a simple undirected graph on n vertices. Let di be the
degree of its i-th vertex, i = 1, . . . , n. Denote ∆ = max di. Prove that if

n∑
i=1

d2i > n∆(n−∆)

then G contains a triangle. (A graph is called simple if there are no loops and no multiple edges between any
pair of vertices.) [Slobodan Filipovski /University of Primorska, Koper]

Solution We prove the claim by contraposition assuming that the obtained graph G does not contain triangles.
If the i-th and the j-th vertex are connected we denote i ∼ j. In this case holds di + dj ≤ n. Hence

n∑
i=1

d2i =
∑
i∼j

(di + dj) ≤ mn, (1)

where m is the number of edges in the graph.
Let v be a vertex of G with maximum degree ∆. Since G is a triangle-free graph there are no edges in the
neighbourhood of v. Moreover, every vertex which is not in the neighborhood of v has degree at most ∆.
Therefore, the maximum number of edges of G is

m ≤ ∆+ (n−∆− 1)∆ = ∆(n−∆). (2)

From (1) and (2) we get
n∑

i=1

d2i ≤ mn ≤ n∆(n−∆). (3)

□
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Problem 4 Let p > 2 be a prime and let

A =
{
n ∈ N : 2p | n and p2 ∤ n and n | 3n − 1

}
.

Prove that

lim sup
k→∞

∣∣A ∩ [1, k]
∣∣

k
≤ 2 log 3

p log p
.

[Slobodan Filipovski /University of Primorska, Koper]

Solution Let n ∈ Ap. Then p | (3n
2 − 1)(3

n
2 + 1), from where 3

n
2 ≡ 1 (mod p) or 3

n
2 ≡ −1 (mod p). Since

p | n and n is an even number, n = pr, where r is even. Since (p, 3) = 1, Fermat’s little theorem yields
3

n
2 ≡ (3p)

r
2 ≡ 3

r
2 (mod p). Hence, 3

r
2 ≡ 1 (mod p) or 3

r
2 ≡ −1 (mod p). Recalling (p, 3) = 1 again, let l denote

the smallest positive integer satisfying 3l ≡ 1 (mod p). This yields p < 3l, and therefore l >
log p

log 3
. As shown

above, there are two possible residue classes modulo l that
r

2
might belong to. Thus, the asymptotic density of

the multiples rp for which r satisfies the above conditions within the set of all multiples of p is at most 2 · log 3
log p

.

To determine the asymptotic density of the multiples of p within the set of all positive integers, we can consider
the set Mk = {p, 2p, 3p, . . . ,mp} with mp ≤ k, for a positive integer k. Then |Mk| = m, and therefore

d(Mk) = lim sup
k→∞

m

k
≤ 1

p
.

By these observations we get

d(Ap) = lim sup
k→∞

|Ap ∩ [1, k]|
k

<
1

p
· 2
l
≤ 2 log 3

p log p
.

□


