Problem 1 Let $f \colon \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. Prove that

$$\left| f(1) - \int_0^1 f(x) \, \mathrm{d}x \right| \le \frac{1}{2} \max_{x \in [0,1]} \left| f'(x) \right|.$$

[Robert Skiba / Nicolaus Copernicus University in Toruń]

 ${\bf Solution} \ \ {\rm We \ have}$

$$f(1) - \int_0^1 f(x)dx = \int_0^1 f'(x)dx - \int_0^1 f(x)dx$$

= $\int_0^1 f'(x)dx - \int_0^1 \int_0^x f'(y)dydx$
= $\int_0^1 f'(x)dx - \int_0^1 \int_y^1 f'(y)dxdy$
= $\int_0^1 f'(x)dx - \int_0^1 f'(y) \int_y^1 dxdy$
= $\int_0^1 f'(x)dx - \int_0^1 f'(y)(1-y)dy$
= $\int_0^1 f'(x)dx - \int_0^1 f'(x)(1-x)dx$
= $\int_0^1 f'(x)(1-(1-x))dx$
= $\int_0^1 f'(x)xdx.$

Hence we get

$$\left| f(1) - \int_0^1 f(x) dx \right| \le \left| \int_0^1 f'(x) x dx \right| \le \int_0^1 |f'(x)x| dx \le \int_0^1 \max_{x \in [0,1]} |f'(x)| \cdot |x| dx$$
$$\le \max_{x \in [0,1]} |f'(x)| \int_0^1 |x| dx = \frac{1}{2} \max_{x \in [0,1]} |f'(x)|.$$

This completes the solution.

Problem 2 Let n be a positive integer and let A, B be two complex nonsingular $n \times n$ matrices such that

$$A^2B - 2ABA + BA^2 = 0.$$

Prove that the matrix $AB^{-1}A^{-1}B - I_n$ is nilpotent. (Here I_n denotes the $n \times n$ identity matrix. A matrix X is called nilpotent if there exists a positive integer k such that $X^k = 0.$)

[Pasha Zusmanovich / University of Ostrava] **Solution** It is enough to prove that 1 is the only eigenvalue of $AB^{-1}A^{-1}B$. **Lemma** If λ is an eigenvalue of $AB^{-1}A^{-1}B$, then $\frac{2\lambda-1}{\lambda}$ is an eigenvalue of $AB^{-1}A^{-1}B$.

Proof Since $AB^{-1}A^{-1}B$ is nondegenerate, $\lambda \neq 0$, and $AB^{-1}A^{-1}B - \lambda E$ is degenerate. Then

$$BA^{-1}\left(AB^{-1}A^{-1}B - \lambda E\right) = \lambda A^{-1}(BA - AB)A^{-1} + (1 - \lambda)A^{-1}B$$
(1)

is degenerate.

The condition $A^2B - 2ABA + BA^2 = 0$ is equivalent to the condition that A commutes with AB - BA, hence A^{-1} commutes with AB-BA, and the right-hand side of (1) can be rewritten as $\lambda A^{-2}(BA-AB) + (1-\lambda)A^{-1}B$. Hence

$$\frac{1}{\lambda}B^{-1}A\Big(\lambda A^{-2}(BA - AB) + (1 - \lambda)A^{-1}B\Big) = B^{-1}A^{-1}BA - \frac{2\lambda - 1}{\lambda}E$$

is degenerate, i.e., $\frac{2\lambda-1}{\lambda}$ is an eigenvalue of $B^{-1}A^{-1}BA$. The matrices $B^{-1}A^{-1}BA$ and $AB^{-1}A^{-1}B$ are conjugate by A, hence they have the same eigenvalues, so $\frac{2\lambda-1}{\lambda}$ is also an eigenvalue of $AB^{-1}A^{-1}B$.

Iterating the lemma, we get that for any eigenvalue λ of $AB^{-1}A^{-1}B$, and any integer $k \ge 1$,

$$\frac{k\lambda - (k-1)}{(k-1)\lambda - (k-2)}$$

is also an eigenvalue of $AB^{-1}A^{-1}B$. Since $AB^{-1}A^{-1}B$ has only a finite number of eigenvalues, we have

$$\frac{k\lambda - (k-1)}{(k-1)\lambda - (k-2)} = \frac{k'\lambda - (k'-1)}{(k'-1)\lambda - (k'-2)}$$

for some (actually, infinitely many) $k \neq k'$. The last equality is equivalent to $(k - k')(\lambda - 1)^2 = 0$, whence $\lambda = 1.$

Problem 3 Let n be a positive integer and let G be a simple undirected graph on n vertices. Let d_i be the degree of its *i*-th vertex, i = 1, ..., n. Denote $\Delta = \max d_i$. Prove that if

$$\sum_{i=1}^n d_i^2 > n \Delta (n-\Delta)$$

then G contains a triangle. (A graph is called simple if there are no loops and no multiple edges between any pair of vertices.) [Slobodan Filipovski / University of Primorska, Koper]

Solution We prove the claim by contraposition assuming that the obtained graph G does not contain triangles. If the *i*-th and the *j*-th vertex are connected we denote $i \sim j$. In this case holds $d_i + d_j \leq n$. Hence

$$\sum_{i=1}^{n} d_i^2 = \sum_{i \sim j} (d_i + d_j) \le mn,$$
(1)

where m is the number of edges in the graph.

Let v be a vertex of G with maximum degree Δ . Since G is a triangle-free graph there are no edges in the neighbourhood of v. Moreover, every vertex which is not in the neighbourhood of v has degree at most Δ . Therefore, the maximum number of edges of G is

$$m \le \Delta + (n - \Delta - 1)\Delta = \Delta(n - \Delta).$$
⁽²⁾

From (1) and (2) we get

$$\sum_{i=1}^{n} d_i^2 \le mn \le n\Delta(n-\Delta).$$
(3)

Problem 4 Let p > 2 be a prime and let

$$\mathcal{A} = \left\{ n \in \mathbb{N} : 2p \mid n \text{ and } p^2 \nmid n \text{ and } n \mid 3^n - 1 \right\}.$$

Prove that

$$\limsup_{k \to \infty} \frac{\left| \mathcal{A} \cap [1,k] \right|}{k} \leq \frac{2 \log 3}{p \log p} \,.$$

[Slobodan Filipovski / University of Primorska, Koper] **Solution** Let $n \in \mathcal{A}_p$. Then $p \mid (3^{\frac{n}{2}} - 1)(3^{\frac{n}{2}} + 1)$, from where $3^{\frac{n}{2}} \equiv 1 \pmod{p}$ or $3^{\frac{n}{2}} \equiv -1 \pmod{p}$. Since $p \mid n$ and n is an even number, n = pr, where r is even. Since (p,3) = 1, Fermat's little theorem yields $3^{\frac{n}{2}} \equiv (3^p)^{\frac{r}{2}} \equiv 3^{\frac{r}{2}} \pmod{p}$. Hence, $3^{\frac{r}{2}} \equiv 1 \pmod{p}$ or $3^{\frac{r}{2}} \equiv -1 \pmod{p}$. Recalling (p,3) = 1 again, let l denote the smallest positive integer satisfying $3^l \equiv 1 \pmod{p}$. This yields $p < 3^l$, and therefore $l > \frac{\log p}{\log 3}$. As shown above, there are two possible residue classes modulo l that $\frac{r}{2}$ might belong to. Thus, the asymptotic density of the multiples rp for which r satisfies the above conditions within the set of all multiples of p is at most $2 \cdot \frac{\log 3}{\log p}$. To determine the asymptotic density of the multiples of p within the set of all positive integers, we can consider the set $M_k = \{p, 2p, 3p, \dots, mp\}$ with $mp \leq k$, for a positive integer k. Then $|M_k| = m$, and therefore

$$\overline{d}(M_k) = \limsup_{k \to \infty} \frac{m}{k} \le \frac{1}{p}.$$

By these observations we get

$$\overline{d}(\mathcal{A}_p) = \limsup_{k \to \infty} \frac{|\mathcal{A}_p \cap [1, k]|}{k} < \frac{1}{p} \cdot \frac{2}{l} \le \frac{2\log 3}{p\log p}.$$