Problem 1 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function. Prove that

$$
\left|f(1)-\int_{0}^{1} f(x) \mathrm{d} x\right| \leq \frac{1}{2} \max _{x \in[0,1]}\left|f^{\prime}(x)\right|
$$

[Robert Skiba / Nicolaus Copernicus University in Toruń]
Solution We have

$$
\begin{aligned}
f(1)-\int_{0}^{1} f(x) d x & =\int_{0}^{1} f^{\prime}(x) d x-\int_{0}^{1} f(x) d x \\
& =\int_{0}^{1} f^{\prime}(x) d x-\int_{0}^{1} \int_{0}^{x} f^{\prime}(y) d y d x \\
& =\int_{0}^{1} f^{\prime}(x) d x-\int_{0}^{1} \int_{y}^{1} f^{\prime}(y) d x d y \\
& =\int_{0}^{1} f^{\prime}(x) d x-\int_{0}^{1} f^{\prime}(y) \int_{y}^{1} d x d y \\
& =\int_{0}^{1} f^{\prime}(x) d x-\int_{0}^{1} f^{\prime}(y)(1-y) d y \\
& =\int_{0}^{1} f^{\prime}(x) d x-\int_{0}^{1} f^{\prime}(x)(1-x) d x \\
& =\int_{0}^{1} f^{\prime}(x)(1-(1-x)) d x \\
& =\int_{0}^{1} f^{\prime}(x) x d x
\end{aligned}
$$

Hence we get

$$
\begin{aligned}
\left|f(1)-\int_{0}^{1} f(x) d x\right| & \leq\left|\int_{0}^{1} f^{\prime}(x) x d x\right| \leq \int_{0}^{1}\left|f^{\prime}(x) x\right| d x \leq \int_{0}^{1} \max _{x \in[0,1]}\left|f^{\prime}(x)\right| \cdot|x| d x \\
& \leq \max _{x \in[0,1]}\left|f^{\prime}(x)\right| \int_{0}^{1}|x| d x=\frac{1}{2} \max _{x \in[0,1]}\left|f^{\prime}(x)\right| .
\end{aligned}
$$

This completes the solution.

The $31^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $13^{\text {th }}$ April 2024
Category I

Problem 2 Let n be a positive integer and let A, B be two complex nonsingular $n \times n$ matrices such that

$$
A^{2} B-2 A B A+B A^{2}=0
$$

Prove that the matrix $A B^{-1} A^{-1} B-I_{n}$ is nilpotent. (Here I_{n} denotes the $n \times n$ identity matrix. A matrix X is called nilpotent if there exists a positive integer k such that $X^{k}=0$.)

> [Pasha Zusmanovich / University of Ostrava]

Solution It is enough to prove that 1 is the only eigenvalue of $A B^{-1} A^{-1} B$.
Lemma If λ is an eigenvalue of $A B^{-1} A^{-1} B$, then $\frac{2 \lambda-1}{\lambda}$ is an eigenvalue of $A B^{-1} A^{-1} B$.
Proof Since $A B^{-1} A^{-1} B$ is nondegenerate, $\lambda \neq 0$, and $A B^{-1} A^{-1} B-\lambda E$ is degenerate. Then

$$
\begin{equation*}
B A^{-1}\left(A B^{-1} A^{-1} B-\lambda E\right)=\lambda A^{-1}(B A-A B) A^{-1}+(1-\lambda) A^{-1} B \tag{1}
\end{equation*}
$$

is degenerate.
The condition $A^{2} B-2 A B A+B A^{2}=0$ is equivalent to the condition that A commutes with $A B-B A$, hence A^{-1} commutes with $A B-B A$, and the right-hand side of (1) can be rewritten as $\lambda A^{-2}(B A-A B)+(1-\lambda) A^{-1} B$.

Hence

$$
\frac{1}{\lambda} B^{-1} A\left(\lambda A^{-2}(B A-A B)+(1-\lambda) A^{-1} B\right)=B^{-1} A^{-1} B A-\frac{2 \lambda-1}{\lambda} E
$$

is degenerate, i.e., $\frac{2 \lambda-1}{\lambda}$ is an eigenvalue of $B^{-1} A^{-1} B A$.
The matrices $B^{-1} A^{-1} B A$ and $A B^{-1} A^{-1} B$ are conjugate by A, hence they have the same eigenvalues, so $\frac{2 \lambda-1}{\lambda}$ is also an eigenvalue of $A B^{-1} A^{-1} B$.

Iterating the lemma, we get that for any eigenvalue λ of $A B^{-1} A^{-1} B$, and any integer $k \geq 1$,

$$
\frac{k \lambda-(k-1)}{(k-1) \lambda-(k-2)}
$$

is also an eigenvalue of $A B^{-1} A^{-1} B$. Since $A B^{-1} A^{-1} B$ has only a finite number of eigenvalues, we have

$$
\frac{k \lambda-(k-1)}{(k-1) \lambda-(k-2)}=\frac{k^{\prime} \lambda-\left(k^{\prime}-1\right)}{\left(k^{\prime}-1\right) \lambda-\left(k^{\prime}-2\right)}
$$

for some (actually, infinitely many) $k \neq k^{\prime}$. The last equality is equivalent to $\left(k-k^{\prime}\right)(\lambda-1)^{2}=0$, whence $\lambda=1$.

The $31^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $13^{\text {th }}$ April 2024
Category I

Problem 3 Let n be a positive integer and let G be a simple undirected graph on n vertices. Let d_{i} be the degree of its i-th vertex, $i=1, \ldots, n$. Denote $\Delta=\max d_{i}$. Prove that if

$$
\sum_{i=1}^{n} d_{i}^{2}>n \Delta(n-\Delta)
$$

then G contains a triangle. (A graph is called simple if there are no loops and no multiple edges between any pair of vertices.)
[Slobodan Filipovski / University of Primorska, Koper]
Solution We prove the claim by contraposition assuming that the obtained graph G does not contain triangles. If the i-th and the j-th vertex are connected we denote $i \sim j$. In this case holds $d_{i}+d_{j} \leq n$. Hence

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i}^{2}=\sum_{i \sim j}\left(d_{i}+d_{j}\right) \leq m n \tag{1}
\end{equation*}
$$

where m is the number of edges in the graph.
Let v be a vertex of G with maximum degree Δ. Since G is a triangle-free graph there are no edges in the neighbourhood of v. Moreover, every vertex which is not in the neighborhood of v has degree at most Δ. Therefore, the maximum number of edges of G is

$$
\begin{equation*}
m \leq \Delta+(n-\Delta-1) \Delta=\Delta(n-\Delta) \tag{2}
\end{equation*}
$$

From (1) and (2) we get

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i}^{2} \leq m n \leq n \Delta(n-\Delta) \tag{3}
\end{equation*}
$$

The $31^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $13^{\text {th }}$ April 2024
Category I

Problem 4 Let $p>2$ be a prime and let

$$
\mathcal{A}=\left\{n \in \mathbb{N}: 2 p \mid n \text { and } p^{2} \nmid n \text { and } n \mid 3^{n}-1\right\} .
$$

Prove that

$$
\limsup _{k \rightarrow \infty} \frac{|\mathcal{A} \cap[1, k]|}{k} \leq \frac{2 \log 3}{p \log p}
$$

[Slobodan Filipovski / University of Primorska, Koper]
Solution Let $n \in \mathcal{A}_{p}$. Then $p \left\lvert\,\left(3^{\frac{n}{2}}-1\right)\left(3^{\frac{n}{2}}+1\right)\right.$, from where $3^{\frac{n}{2}} \equiv 1(\bmod p)$ or $3^{\frac{n}{2}} \equiv-1(\bmod p)$. Since $p \mid n$ and n is an even number, $n=p r$, where r is even. Since $(p, 3)=1$, Fermat's little theorem yields $3^{\frac{n}{2}} \equiv\left(3^{p}\right)^{\frac{r}{2}} \equiv 3^{\frac{r}{2}}(\bmod p)$. Hence, $3^{\frac{r}{2}} \equiv 1(\bmod p)$ or $3^{\frac{r}{2}} \equiv-1(\bmod p)$. Recalling $(p, 3)=1$ again, let l denote the smallest positive integer satisfying $3^{l} \equiv 1(\bmod p)$. This yields $p<3^{l}$, and therefore $l>\frac{\log p}{\log 3}$. As shown above, there are two possible residue classes modulo l that $\frac{r}{2}$ might belong to. Thus, the asymptotic density of the multiples $r p$ for which r satisfies the above conditions within the set of all multiples of p is at most $2 \cdot \frac{\log 3}{\log p}$. To determine the asymptotic density of the multiples of p within the set of all positive integers, we can consider the set $M_{k}=\{p, 2 p, 3 p, \ldots, m p\}$ with $m p \leq k$, for a positive integer k. Then $\left|M_{k}\right|=m$, and therefore

$$
\bar{d}\left(M_{k}\right)=\limsup _{k \rightarrow \infty} \frac{m}{k} \leq \frac{1}{p}
$$

By these observations we get

$$
\bar{d}\left(\mathcal{A}_{p}\right)=\limsup _{k \rightarrow \infty} \frac{\left|\mathcal{A}_{p} \cap[1, k]\right|}{k}<\frac{1}{p} \cdot \frac{2}{l} \leq \frac{2 \log 3}{p \log p}
$$

