The 31st Annual Vojtěch Jarník International Mathematical Competition Ostrava, 13th April 2024 Category II

Problem 1 Suppose that $f: [-1,1] \to \mathbb{R}$ is continuous and that

$$\left(\int_{-1}^{1} \mathrm{e}^{x} f(x) \,\mathrm{d}x\right)^{2} \ge \left(\int_{-1}^{1} f(x) \,\mathrm{d}x\right) \left(\int_{-1}^{1} \mathrm{e}^{2x} f(x) \,\mathrm{d}x\right) \,.$$

Prove that there exists a point $c \in (-1, 1)$ such that f(c) = 0.

Problem 2 A real 2024×2024 matrix A is called nice if (Av, v) = 1 for every vector $v \in \mathbb{R}^{2024}$ with unit norm. a) Prove that the only nice matrix such that all of its eigenvalues are real is the identity matrix.

b) Find an example of a nice non-identity matrix.

Problem 3 Let $a_1 > 0$ and for $n \ge 1$ define

$$a_{n+1} = a_n + \frac{1}{a_1 + a_2 + \ldots + a_n}$$

Prove that $\lim_{n \to \infty} \frac{a_n^2}{\ln n} = 2.$

Problem 4 Let $(b_n)_{n\geq 0}$ be a sequence of positive integers satisfying $b_n = d\left(\sum_{k=0}^{n-1} b_k\right)$ for all $n \geq 1$. (By d(m) we denote the number of positive divisors of m.)

a) Prove that $(b_n)_{n\geq 0}$ is unbounded.

b) Prove that there are infinitely many n such that $b_n > b_{n+1}$.

[10 points]

[10 points]

[10 points]

[10 points]