The $30^{\text {th }}$ Annual Vojtěch Jarník International Mathematical Competition
 Ostrava, $2^{\text {nd }}$ April 2022
 Category II

Problem 1 Determine whether there exists a differentiable function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
f(0)=f(1)=1, \quad\left|f^{\prime}(x)\right| \leq 2 \text { for all } x \in[0,1] \quad \text { and } \quad\left|\int_{0}^{1} f(x) \mathrm{d} x\right| \leq \frac{1}{2}
$$

[Robert Skiba / Nicolaus Copernicus University in Toruń]
Solution Let us suppose that there exists the required function $f:[0,1] \rightarrow \mathbb{R}$. Then the mean value theorem implies that for any $x \in(0,1)$ there exist $c_{x}, d_{x} \in(0,1)$ such that

$$
\frac{f(x)-f(0)}{x}=\frac{f(x)-1}{x}=f^{\prime}\left(c_{x}\right) \geq-2 \Longrightarrow f(x) \geq-2 x+1
$$

and

$$
\frac{f(x)-f(1)}{x-1}=\frac{f(x)-1}{x-1}=f^{\prime}\left(d_{x}\right) \leq 2 \Longrightarrow f(x) \geq 2 x-1
$$

Hence we infer that

$$
f(x) \geq|2 x-1|
$$

for all $x \in[0,1]$. Thus

$$
\int_{0}^{1} f(x) \mathrm{d} x \geq \int_{0}^{1}|2 x-1| \mathrm{d} x=\frac{1}{2} .
$$

On the other hand, one has

$$
\int_{0}^{1} f(x) \mathrm{d} x \leq\left|\int_{0}^{1} f(x) \mathrm{d} x\right| \leq \frac{1}{2}
$$

Thus

$$
\int_{0}^{1} f(x) \mathrm{d} x=\frac{1}{2}
$$

which implies that

$$
\int_{0}^{1}(f(x)-|2 x-1|) \mathrm{d} x=0 .
$$

But $f(x)-|2 x-1|$ is nonnegative and continuous and therefore $f(x)-|2 x-1|=0$ for all $x \in[0,1]$. Hence $f(x)=|2 x-1|$ for all $x \in[0,1]$. This implies that $f(x)$ is not differentiable at the point $x=\frac{1}{2}$, which implies the contradiction because we assumed that $f(x)$ is differentiable at any point $x \in[0,1]$.

The $30^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $2^{\text {nd }}$ April 2022
Category II

Problem 2 For any given pair of positive integers $m>n$ find all $a \in \mathbb{R}$ for which the polynomial $x^{m}-a x^{n}+1$ can be expressed as a quotient of two nonzero polynomials with real nonnegative coefficients.
[Artūras Dubickas / Vilnius University]
Solution The answer is $a<m \cdot n^{-n / m} \cdot(m-n)^{n / m-1}$.
For $a \leq 0$ the given polynomial

$$
\begin{equation*}
f(x)=x^{m}-a x^{n}+1 \tag{1}
\end{equation*}
$$

has the required form $P(x) / Q(x)$, since one can select $P(x)=f(x)$ and $Q(x)=1$. So, from now on, let us assume that $a>0$.

Note that $f^{\prime}(x)=m x^{m-1}-a n x^{n-1}$ vanishes at $x_{0}=(a n / m)^{1 /(m-n)}$. Thus, the polynomial f has a real positive root, say β, if

$$
f\left(x_{0}\right)=1-x_{0}^{n}\left(a-x_{0}^{m-n}\right)=1-(m-n) n^{n /(m-n)}(a / m)^{m /(m-n)} \leq 0,
$$

i.e., $a \geq m \cdot n^{-n / m} \cdot(m-n)^{n / m-1}$. For any such a assume that one has $f(x)=P(x) / Q(x)$ with appropriate polynomials P and Q. Then, $P(\beta)=f(\beta) Q(\beta)=0$, which is impossible, since $\beta>0$ and $P \in \mathbb{R}[x]$ has real nonnegative coefficients (and is nonzero).

Finally, we will show that $f(x)$ can be expressed in the required form $P(x) / Q(x)$ if a satisfies the opposite inequality

$$
\begin{equation*}
0<a<m \cdot n^{-n / m} \cdot(m-n)^{n / m-1} . \tag{2}
\end{equation*}
$$

To prove this we will use the formula $u^{K}-v^{K}=(u-v)\left(u^{K-1}+\cdots+v^{K-1}\right)$ with $u=x^{m}+1, v=a x^{n}$ and K divisible by $m n$. Fix any a satisfying (2). Set

$$
P(x)=\left(x^{m}+1\right)^{m n N}-\left(a x^{n}\right)^{m n N}, \quad Q(x)=\sum_{j=0}^{m n N-1}\left(x^{m}+1\right)^{m n N-1-j}\left(a x^{n}\right)^{j}
$$

with $N \in \mathbb{N}$ to be chosen later. Then, $f(x)=P(x) / Q(x)$ by (1). Evidently, the polynomial Q has real nonnegative coefficients. So does also P if the binomial coefficient $\binom{m n N}{n^{2} N}$ for $x^{m n^{2} N}\left(\right.$ in $\left(x^{m}+1\right)^{m n N}$) is greater than or equal to $a^{m n N}$. Thus, it remains to check that

$$
\begin{equation*}
a \leq\binom{ m n N}{n^{2} N}^{1 /(m n N)}=\left(\frac{(m n N)!}{((m-n) n N)!\left(n^{2} N\right)!}\right)^{1 /(m n N)} \tag{3}
\end{equation*}
$$

for some $N \in \mathbb{N}$. By Stirling's formula, $M!\sim \sqrt{2 \pi M}(M / e)^{M}$ as $M \rightarrow \infty$. Hence, as $N \rightarrow \infty$, the right hand side of (3) tends to the constant

$$
\frac{m n}{((m-n) n)^{(m-n) / m} n^{2 n / m}}=m \cdot n^{-n / m} \cdot(m-n)^{n / m-1} .
$$

Therefore, by (2), the inequality (3) holds for each sufficiently large $N \in \mathbb{N}$.

Ostrava, $2^{\text {nd }}$ April 2022
Category II

Problem 3 Let x_{1}, \ldots, x_{n} be given real numbers with $0<m \leq x_{i} \leq M$ for each $i \in\{1, \ldots, n\}$. Let X be the discrete random variable uniformly distributed on $\left\{x_{1}, \ldots, x_{n}\right\}$. The mean μ and the variance σ^{2} of X are defined as

$$
\mu(X)=\frac{x_{1}+\cdots+x_{n}}{n} \quad \text { and } \quad \sigma^{2}(X)=\frac{\left(x_{1}-\mu(X)\right)^{2}+\cdots+\left(x_{n}-\mu(X)\right)^{2}}{n}
$$

By X^{2} denote the discrete random variable uniformly distributed on $\left\{x_{1}^{2}, \ldots, x_{n}^{2}\right\}$. Prove that

$$
\sigma^{2}(X) \geq\left(\frac{m}{2 M^{2}}\right)^{2} \sigma^{2}\left(X^{2}\right)
$$

[Slobodan Filipovski / University of Primorska, Koper]
Solution First we prove the following lemma:
Lemma If x and y are strictly positive real numbers, then

$$
\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}} \geq 2+\frac{(x-y)^{2}}{2\left(x^{2}+y^{2}\right)}
$$

Proof We prove the following equivalent inequality

$$
\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}} \geq 2+\frac{\left(\frac{x}{y}\right)^{2}-2\left(\frac{x}{y}\right)+1}{2\left(\left(\frac{x}{y}\right)^{2}+1\right)} .
$$

Let $t^{2}=\frac{x}{y}, t>0$. The required inequality is equivalent to the inequalities

$$
t+\frac{1}{t} \geq 2+\frac{t^{4}-2 t^{2}+1}{2\left(t^{4}+1\right)} \Leftrightarrow 2 t^{6}-5 t^{5}+2 t^{4}+2 t^{3}+2 t^{2}-5 t+2 \geq 0
$$

Now we easily show $2 t^{6}-5 t^{5}+2 t^{4}+2 t^{3}+2 t^{2}-5 t+2=(t-1)^{4}\left(2 t^{2}+3 t+2\right) \geq 0$.
Let $a_{i}=\frac{x_{i}^{2}}{x_{1}^{2}+\ldots+x_{n}^{2}}$ and $b_{i}=\frac{1}{n}$ for $i=1, \ldots, n$. Applying the above lemma for $x=a_{i}$ and $y=b_{i}$ we obtain

$$
\begin{equation*}
\frac{x_{i}^{2}}{x_{1}^{2}+\ldots+x_{n}^{2}}+\frac{1}{n} \geq\left(2+\frac{\left(x_{i}^{2} n-\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)\right)^{2}}{2\left(x_{i}^{4} n^{2}+\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{2}\right)}\right) \frac{x_{i}}{\sqrt{\left(n\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)\right.}} \tag{1}
\end{equation*}
$$

Now if we sum up the obtained n inequalities in (1) we get

$$
\begin{gathered}
2 \geq \frac{2}{\sqrt{n\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)}} \sum_{i=1}^{n} x_{i}+\frac{m}{\sqrt{n\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)}} \cdot \frac{1}{2\left(M^{4}+\mu^{2}\left(X^{2}\right)\right)} \cdot \sum_{i=1}^{n}\left(x_{i}^{2}-\frac{x_{1}^{2}+\ldots+x_{n}^{2}}{n}\right)^{2} \Leftrightarrow \\
\sqrt{\frac{x_{1}^{2}+\ldots+x_{n}^{2}}{n}} \geq \frac{\sum_{i=1}^{n} x_{i}}{n}+\frac{m \cdot \sigma^{2}\left(X^{2}\right)}{4\left(M^{4}+\mu^{2}\left(X^{2}\right)\right)}=\mu(X)+\frac{m \cdot \sigma^{2}\left(X^{2}\right)}{4\left(M^{4}+\mu^{2}\left(X^{2}\right)\right)} \Leftrightarrow \\
\sqrt{\mu\left(X^{2}\right)} \geq \mu(X)+\frac{m \cdot \sigma^{2}\left(X^{2}\right)}{4\left(M^{4}+M^{4}\right)}=\mu(X)+\frac{m \cdot \sigma^{2}\left(X^{2}\right)}{8 M^{4}} .
\end{gathered}
$$

In the end we get

$$
\sigma^{2}(X)=\left(\sqrt{\mu\left(X^{2}\right)}-\mu(X)\right)\left(\sqrt{\mu\left(X^{2}\right)}+\mu(X)\right) \geq \frac{m \sigma^{2}\left(X^{2}\right)}{8 M^{4}} \cdot 2 m=\left(\frac{m}{2 M^{2}}\right)^{2} \cdot \sigma^{2}\left(X^{2}\right)
$$

The $30^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $2^{\text {nd }}$ April 2022
Category II

Problem $4 A$ function $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ is called multiplicative if for every $a, b \in \mathbb{Z}^{+}$with $\operatorname{gcd}(a, b)=1$ we have $f(a b)=f(a) f(b)$. Let g be the multiplicative function given by

$$
g\left(p^{\alpha}\right)=\alpha p^{\alpha-1}
$$

where $\alpha \in \mathbb{Z}^{+}$and $p>0$ is a prime. Prove that there exist infinitely many positive integers n such that

$$
g(n)+1=g(n+1) .
$$

[Leonhard Summerer / University of Vienna]
Solution First we observe that $g(n)=1$ for all squarefree integers n. Then we start by finding integers a and b for which $g(a)+1=g(b)$. For example $a=13^{2}$ and $b=3^{3}$ so that $g(a)=26$ and $g(b)=27$. By the observation at the beginning combined with the multiplicativity of g we have $g(a x)=26$ and $g(b y)=27$ provided x, y are squarefree positive integers with $(x, 13)=(y, 3)=1$. It thus suffices to show the existence of at least one (resp. infinitely many) solution(s) of the linear diophantine equation $a x-b y=-1$ with the mentioned restrictions on x, y.

It is well known that all solutions of the above equation are given by

$$
x=x_{0}+27 t \text { and } y=y_{0}+169 t
$$

where $\left(x_{0}, y_{0}\right)$ is a particular solution and $t=0,1,2, \ldots$ Using the Euclidean Algorithm, one easily finds that the least positive solution is given by $x_{0}=23$ and $y_{0}=144$. Unfortunately 144 is neither squarefree nor coprime to 3 , but for $t=2$ we find $x=77=7 \cdot 11$ and $y=482=2 \cdot 241$ which fulfill all requirements and lead to the solution

$$
g(13013)=26 \text { and } g(13014)=27
$$

In order to find infinitely many solutions we consider the sequences

$$
x_{s}=77+27 s \text { and } y_{s}=482+169 s,
$$

where $s=39 t, t=0,1,2, \ldots$ which guarantees $(x, 13)=(y, 3)=1$. It suffices to show that there exist infinitely many s such that x_{s} and y_{s} are simultaneously squarefree. This follows from a Theorem of Prachar, saying that the density of squarefree integers in the arithmetic progression $n k+l$ where $(k, l)=1$ is

$$
\frac{6}{\pi^{2}} \prod_{p \mid k}\left(1-\frac{1}{p^{2}}\right)^{-1}
$$

which is always greater than $6 / \pi^{2}$ and hence greater than $1 / 2$.

