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Problem 1 Assume that a real polynomial P (x) has no real roots. Prove that the polynomial

Q(x) = P (x) +
P ′′(x)

2!
+

P (4)(x)

4!
+ . . .

also has no real roots. [Diana Barseghyan /University of Ostrava]

Solution Since P at any point coincides with its Taylor series one has

P (x+ 1) = P (x) + P ′(x) +
P ′′(x)

2!
+ . . .

P (x− 1) = P (x)− P ′(x) +
P ′′(x)

2!
− . . .

Let us notice that

Q(x) =
P (x+ 1) + P (x− 1)

2
.

Hence Q(x) preserves sign together with P (x) which finishes the proof. □
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Problem 2 Let n ≥ 1. Assume that A is a real n×n matrix which satisfies the equality

A7 +A5 +A3 +A− I = 0 .

Show that det(A) > 0. [Daniel Strzelecki /Nicolaus Copernicus University in Toruń]

Solution Put w(x) = x7 + x5 + x3 + x − 1. Since w(A) = 0, any eigenvalue of A is a root of w(x). We are
going to show that only one eigenvalue is real and strictly positive and the remaining eigenvalues belong to the
set C \ R. Since

w′(x) = 7x6 + 5x4 + 3x2 + 1 > 0

for all x ∈ R, it follows that w(x) has only one real root. The remaining roots of w(x) are pairs of complex
conjugate numbers. Furthermore, we have w(0) = −1 and w(1) = 3, so w(λ0) = 0 for some λ0 ∈ (0, 1) i.e. w(x)
possesses exactly one positive root.
It is well known that the determinant is a product of all (not necessarily different eigenvalues). So, finally,

we obtain
det(A) = λα0

0 λα1
1 λα1

1 · . . . · λαm
m λαm

m = λα0
0 · |λ1|α1 · . . . |λm|αm > 0,

where λ1, . . . , λm ∈ σ(A) ∩ C with αi ∈ N ∪ {0}. This completes the solution. □
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Problem 3 Let f : [0, 1] → R be a given continuous function. Find the limit

lim
n→∞

(n+ 1)

n∑
k=0

∫ 1

0

xk(1− x)n−kf(x) dx .

[Marcin Zygmunt /University of Silesia in Katowice]

Solution The limit is equal to f(0) + f(1).
First we need the following lemma:

Lemma. Let f : [0, 1] → R be an integrable function, continuous at x = 1. Then

lim
n→∞

(n+ 1)

∫ 1

0

xnf(x) dx = f(1) .

Proof We will show that the difference of the integral and f(1) tends to 0 as n goes to infinity. Let ε > 0. Then
(by the continuity at x = 1) there exists δ > 0 such that |f(x)− f(1)| < ε/2 for x ∈ (1− δ, 1]. As 0 < 1− δ < 1

then there exists n0 such that (n+ 1)(1− δ)n < ε/2(M + |f(1)|) for all n ≥ n0, where M =
∫ 1

0
|f(x)|dx.

We have

(n+ 1)

∫ 1

0

xnf(x) dx− f(1) =

∫ 1

0

xn
(
f(x)− f(1)

)
dx ,

hence ∣∣∣∣(n+ 1)

∫ 1

0

xn
(
f(x)− f(1)

)
dx

∣∣∣∣ ≤ (n+ 1)

∫ 1

0

xn
∣∣f(x)− f(1)

∣∣dx
= (n+ 1)

∫ 1−δ

0

· · ·+ (n+ 1)

∫ 1

1−δ

. . .

≤ (n+ 1)(1− δ)n
∫ 1−δ

0

(
|f(x)|+ |f(1)|

)
dx+

ε

2
(n+ 1)

∫ 1

1−δ

xn dx

≤ ε

2
+

ε

2
= ε ,

for all n ≥ n0. This, by definition, means that

lim
n→∞

(n+ 1)

∫ 1

0

xnf(x) dx = f(1) .

□

Now we can proceed with the solution to this specific limit. Let us assume for the moment that all following
formulas and transformations make sense. So we have

(n+ 1)

n∑
k=0

∫ 1

0

xk(1− x)n−kf(x) dx = (n+ 1)

∫ 1

0

1

2x− 1

(
x− (1− x)

)( n∑
k=0

xk(1− x)n−k
)
f(x) dx

= (n+ 1)

∫ 1

0

xn+1 − (1− x)n+1

2x− 1
f(x) dx

= (n+ 1)

∫ 1

0

xn+1

2x− 1
f(x) dx−

∫ 1

0

(1− x)n+1

2x− 1
f(x) dx

= (n+ 1)

∫ 1

0

xn+1

2x− 1
f(x) dx−

∫ 1

0

xn+1

1− 2x
f(1− x) dx

= (n+ 1)

∫ 1

0

xn x

2x− 1

(
f(x) + f(1− x)

)
dx ,

where in the second integral we substituted 1− x for x.
Now we can see that above transformations are possible iff all integrals exists, i.e. function 1

2x−1f(x) is
integrable. Even in the opposite case we can eliminate the integrability problem by equating the function to
zero in neighbourhood 1/2, i.e. to proceed as follows.



Let ε > 0, f̃(x) =

{
0, x ∈ ( 14 ,

3
4 )

f(x), otherwise
and let n0 be such that

(n+ 1)2
(3
4

)n

<
ε

max
x∈[ 14 ,

3
4 ]
|f(x)|

for all n ≥ n0. Then we have∣∣∣∣(n+ 1)

n∑
k=0

∫ 1

0

xk(1− x)n−kf(x) dx− (n+ 1)

n∑
k=0

∫ 1

0

xk(1− x)n−kf̃(x) dx

∣∣∣∣
≤ (n+ 1)

n∑
k=0

∫ 3
4

1
4

xk(1− x)n−k
∣∣f(x)∣∣dx < (n+ 1)2

(3
4

)n

· max
x∈[ 14 ,

3
4 ]
|f(x)| = ε

for all n ≥ n0. Hence

lim
n→∞

(n+ 1)

n∑
k=0

∫ 1

0

xk(1− x)n−kf(x) dx = lim
n→∞

(n+ 1)

n∑
k=0

∫ 1

0

xk(1− x)n−kf̃(x) dx

= lim
n→∞

(n+ 1)

∫ 1

0

xn x

2x− 1

(
f̃(x) + f̃(1− x)

)
dx

= f̃(1) + f̃(0) = f(0) + f(1).

□
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Problem 4 In a box there are 31, 41 and 59 stones coloured, respectively, red, green and blue. Three players,
having t-shirts of these three colours, play the following game. They sequentially make one of two moves:

(I) either remove three stones of one colour from the box,

(II) or replace two stones of different colours by two stones of the third colour.

The game ends when all the stones in the box have the same colour and the winner is the player whose t-shirt
has this colour. Assuming that the players play optimally, is it possible to decide whether the game ends and
who will win, depending on who the starting player is? [Leszek Pieniążek / Jagiellonian University]

Solution We will show that if red player starts the game and the players use an optimal strategy the game
will never stop. On the other hand, if any other player starts, red will win.
Let an, bn, cn be the numbers of stones of the three colours after n moves and define two functions:

N(n) = an + bn + cn (mod 3) and D(n) = an + 2bn (mod 3).

It is easy to check that N(n) and D(n) are constant regardless of the moves made by players. N(0) = 2
and D(0) = 2, which implies that if the game ends after n moves, then an ≡ 2 (mod 3) and bn = cn = 0 (easy
check: two of the numbers should be 0 and the last one is given by N(n) = D(n) = 2), so the only player who
can win is red. Thus

red wins iff game stops, the other players try to play infinitely.

We will prove that red has a strategy to win unless he starts.
At first stage, as long as it is possible, red removes three stones of any colour (or ends the game if it is

possible – we already proved that he is the winner in this situation). Number of stones on the pile strictly
decreases after his move, so at some time there will be 2 or 5 stones (N(n) = 2 and if there are more stones,
red player can remove 3 stones). Now the only possible (unordered) combinations of numbers an, bn, cn can be
seen on the diagram below. Arrows show how they can change in allowed moves.

(011) (002) (005)

(014) (023) (113)

(122)

Red can win in one move for vertices 011, 023, 113. From 014 red goes to the winning vertex 011. The only
possibility for draw is when red player moves from vertex 122. The other two players can go back to 122 in
their moves and the game is infinite. Thus we have to determine who will have his move in vertex 122.
All possible (ordered!) values of an, bn, cn (mod 3) are shown on the following diagram (easy check). Starting

vertex corresponding to (31, 41, 59) is 122. Arrows show changes according to moves of type (II). Moves (I) do
not change the state of the diagram.

(011) (200)

(122)

We analyse what happens if we obtain (1, 2, 2). This means that the players made 42 moves of type (I)
(as 126 stones where removed) and 3k moves (II) (k is the number of loops made on the graph), thus total
number of moves is divisible by 3. So it is again the starting player’s turn. If he is red, the other players can
continue the game without end. If any other player started, red will be the winner. □


