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Problem 1 Let n > k and let Ay, ..., Ay be real n X n matrices of rank n — 1. Prove that
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Problem 2 Let k be a positive integer. Compute
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Problem 3 Let p and q be complex polynomials with degp > degq and let f(z) = ZE Suppose that all
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roots of p lie inside the unit circle |z| = 1 and that all roots of q lie outside the unit circle. Prove that
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Problem 4 Let Q[x] denote the vector space over Q of polynomials with rational coefficients in one variable .
Find all Q-linear maps ®: Q[z] — Q|x] such that for any irreducible polynomial p € Q[x] the polynomial ®(p)
is also irreducible.

(A polynomial p € Q[x] is called irreducible if it is non-constant and the equality p = q1q2 is impossible for
non-constant polynomials q1,qs € Q[z].)
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